Solveeit Logo

Question

Mathematics Question on integral

Prove: 0π42tan3xdx=1log2∫^{\frac{π}{4}}_0 2tan^3xdx=1-log2

Answer

Let I=0π42tan3xdxI=∫^{\frac{π}{4}}_0 2tan^3xdx
I=20π4tan2xtanxdx=20π4(sec2x1)tanxdxI=2∫^{\frac{π}{4}}_0 tan^2x\,tanxdx=2∫^{\frac{π}{4}}_0(sec^2x-1)tanxdx
=20π4sec2xtanxdx20π4tanxdx=2∫^{\frac{π}{4}}_0 sec^2x\,tanx\,dx-2∫^{\frac{π}{4}}_0 tanx\,dx
=2[tan2x2]0π4+2[logcosx]0π4=2[\frac{tan^2x}{2}]^{\frac{π}{4}}_0+2[log\,cosx]^{\frac{π}{4}}_0
=1+2[logcosπ4logcos0]=1+2[logcos\frac{π}{4}-logcos0]
=1+2[log12log1]=1+2[log\frac{1}{\sqrt{2}}-log1]
=1log2log1=1log2=1-log2-log1=1-log2
Hence,the given result is proved.