Question
Mathematics Question on integral
Prove: ∫04π2tan3xdx=1−log2
Answer
Let I=∫04π2tan3xdx
I=2∫04πtan2xtanxdx=2∫04π(sec2x−1)tanxdx
=2∫04πsec2xtanxdx−2∫04πtanxdx
=2[2tan2x]04π+2[logcosx]04π
=1+2[logcos4π−logcos0]
=1+2[log21−log1]
=1−log2−log1=1−log2
Hence,the given result is proved.