Question
Mathematics Question on integral
Prove: ∫02πsin3xdx=32
Answer
Let I=∫02πsin3xdx=32
I=∫02πsin2x.sinxdx
=∫02π(1−cos2x)sinxdx
=∫02πsinxdx−∫02πcos2x.sinxdx
=[−cosx]02π+[3cos3x]02π
=1+31[−1]=1−31=32
Hence,the given result is proved.