Question
Mathematics Question on Inverse Trigonometric Functions
Prove: 49π−49sin−131=49sin−1322
Answer
L.H.S = 89π - 49sin-131
=49(2π - sin-131)
=49(cos-131) ……....(1) [sin-1x + cos-1x = 2π]
Now, let cos-131 = x. Then, cos x = 31 ⟹sin x = 1−(31)2 = 322.
Therefore x = sin-1322
Therefore L.H.S = 49sin-1322
=R.H.S