Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: 9π494sin113=94sin1223\frac {9\pi}{4} - \frac 94 sin^{-1}\frac 13 = \frac 94sin^{-1}\frac {2\sqrt 2}{3}

Answer

L.H.S = 9π8\frac {9\pi}8{} - 94\frac 94sin-113\frac 13
=94\frac 94(π2\frac {\pi}{2} - sin-113\frac 13)
=94\frac 94(cos-113\frac 13) ……....(1) [sin-1x + cos-1x = π2\frac {\pi}{2}]
Now, let cos-113\frac 13 = x. Then, cos x = 13\frac 13     \impliessin x = 1(13)2\sqrt {1-(\frac 13)^2} = 223\frac {2\sqrt 2}{3}.
Therefore x = sin-1223\frac {2\sqrt 2}{3}
Therefore L.H.S = 94\frac 94sin-1223\frac {2\sqrt 2}{3}
=R.H.S