Solveeit Logo

Question

Question: Prove \[\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \d...

Prove
cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)=1\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1

Explanation

Solution

In this question, we have to prove that
cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} is equal to 11 . First we need to consider the left hand side of the given expression. In order to prove this,we need to use the concepts of trigonometric identities. By using trigonometric identities and functions, we can prove this expression easily.

Complete answer:
Consider the left part of the expression,
\Rightarrow cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} ••• (1)
We know that the value of π\pi is 180°180°
\Rightarrow 2π=2(180°)2\pi = 2(180°)
By multiplying,
We get,
2π=360°2\pi = 360°
We can rewrite cos(2π+x)cos(2\pi + x) as cosx{cosx}, since it lies in the first quadrant.
Similarly, we can also rewrite cosec(2π+x)cosec(2\pi + x) as cosecx{cosec x}, since it lies in the first quadrant.
Now we need to find tan(π2+x)tan(\dfrac{\pi}{2} + x),
We know that tanx=sinxcosxtanx = \dfrac{{sinx}}{{cosx}}
tan(π2+x) =sin(π2+x)cos((π2)+x) tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \dfrac{\pi}{2} + x \right)}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}\
We also know that,
sin(A+B) =sinAcosB+cosAsinBsin(A + B)\ = sinAcosB + cosAsinB
cos(A+B) =cosAcosBsinAsinBcos(A + B)\ = cosAcosB – sinAsinB
Thus we get,
tan(π2+x) =sin(π2)cosx+cos(π2)sinxcos(π2)cosxsin(π2)sinx tan(\dfrac{\pi}{2} + x)\ = \dfrac{\sin\left( \frac{\pi}{2} \right)cosx + \cos\left( \dfrac{\pi}{2} \right){sinx}}{\cos\left( \dfrac{\pi}{2} \right)cosx - \sin\left( \dfrac{\pi}{2} \right){sinx}}\
We know that,
sin(π2)=1s{in}\left( \dfrac{\pi}{2} \right) = 1
cos(π2)=0c{os}\left( \dfrac{\pi}{2} \right) = 0
By substituting the values,
We get,
\Rightarrow tan((π2)+x) =1×cosx+001×sinx\tan\left( \left( \frac{\pi}{2} \right) + x \right)\ = \frac{1 \times cosx + 0}{0 – 1 \times sinx}
=cosxsinx= \dfrac{{cosx}}{- sinx}
We know that cosxsinx\dfrac{{cosx}}{{sinx}} is cotx{cotx}
Thus we get,
\Rightarrow tan((π2)+x)=cotx\tan\left( \left( \frac{\pi}{2} \right) + x \right) = - cotx
Similarly, we need to find for
sec((π2)+x)\sec\left( \left( \dfrac{\pi}{2} \right) + x \right)
\Rightarrow sec((π2)+x)=1cos((π2)+x)\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{\cos\left( \left( \dfrac{\pi}{2} \right) + x \right)}
We know that cos((π2)+x)cos(\left( \dfrac{\pi}{2} \right) + x) is  sinx\ - sinx
Thus we get,
sec((π2)+x)=1sinx\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = \dfrac{1}{- sinx}
We also know that 1sinx \dfrac{1}{\sin x}\ is cosecx{cosecx}
Thus we get,
sec((π2)+x)=cosecx\sec\left( \left( \dfrac{\pi}{2} \right) + x \right) = - cosecx
Then by rewriting the terms in (1),
We get,
\Rightarrow cosxcosecx(cotx)(cosecx)cosxcotx\dfrac{{cosxcosecx}\left( - cotx \right)}{\left( - cosecx \right){cosxcotx}}
By simplifying,
We get,
cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)=1\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1
Thus we have proved that,
cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)=1\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1
Final answer :
cos(2π + x)cosec(2π + x)tan((π2)+ x)sec((π2)+ x)cosxcot(π + x)=1\dfrac{\cos\left( 2\pi\ + \ x \right){cosec}\left( 2\pi\ + \ x \right)\tan\left( \left( \dfrac{\pi}{2} \right) + \ x \right)}{\sec\left( \left( \dfrac{\pi}{2} \right) + \ x \right){cos xcot}\left( \pi\ + \ x \right)} = 1

Note:
The concept used to prove the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution rule with the use of trigonometric functions.