Solveeit Logo

Question

Question: Prove : \[\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}} = \dfrac{{1 + sinx}}{{cosx}}\;\]...

Prove :
1+cosx+sinx1+cosxsinx=1+sinxcosx  \dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}} = \dfrac{{1 + sinx}}{{cosx}}\;

Explanation

Solution

Hint : To prove the given trigonometric expression start solving from LHS. First divide each term of numerator and denominator by   cosx\;cosx then apply the trigonometric formulas as required and solve LHS we will get the RHS.

Complete step-by-step answer :
LHS is given as
1+cosx+sinx1+cosxsinx\dfrac{{1 + cosx + sinx}}{{1 + cosx - sinx}}
Dividing each terms of numerators and denominator by   cosx\;cosx
We get,
secx+1+tanxsecx+1tanx\dfrac{{secx + 1 + tanx}}{{secx + 1 - tanx}}
now write 1=sec2xtan2x1 = se{c^2}x - ta{n^2}x in the above equation
secx+tanx+sec2xtan2xsecx+1tanx\dfrac{{secx + tanx + se{c^2}x - ta{n^2}x}}{{secx + 1 - tanx}}
now break sec2xtan2xse{c^2}x - ta{n^2}x ​ into (secxtanx)(secx+tanx)\left( {secx - tanx} \right)\left( {secx + tanx} \right)
secx+tanx+(secxtanx)(secx+tanx)secx+1tanx\dfrac{{secx + tanx + \left( {secx - tanx} \right)\left( {secx + tanx} \right)}}{{secx + 1 - tanx}}
now take secx+tanxsecx + tanx as common
secx+tanx(secxtanx+1)secx+1tanx\dfrac{{secx + tanx\left( {secx - tanx + 1} \right)}}{{secx + 1 - tanx}}
cancelling the like terms we get,
secx+tanxsecx + tanx
now write all the trigonometric ratios in terms of cosx\cos x and   sinx\;sinx
we get,
1cosx+sinxcosx=1+sinxcosx\dfrac{1}{{cosx}} + \dfrac{{sinx}}{{cosx}} = \dfrac{{1 + sinx}}{{cosx}}
Hence LHS=RHSLHS = RHS

Note : Instead of dividing each term of numerator and denominator by cosx\cos x we can also divide by   sinx\;sinx each term of numerator and denominator we will get the same result. Students can take this as an example to try out the other method.