Solveeit Logo

Question

Question: Prove \[\dfrac{1+\cos A}{\sin A}+\dfrac{\sin A}{1+\cos A}=2\text{cosec}A\]...

Prove 1+cosAsinA+sinA1+cosA=2cosecA\dfrac{1+\cos A}{\sin A}+\dfrac{\sin A}{1+\cos A}=2\text{cosec}A

Explanation

Solution

To find the proof, we first need to find the LCM of the LHS and after that we need to find the value in terms of coscos and sinsin to convert into coseccosec and then equate both the LHS and RHS together to form 2cosecA2\text{cosec}A on both LHS and RHS.

Complete solution step by step:
First let us find the LCM of the LHS by finding the product of the denominator as:
1+cosAsinA+sinA1+cosA\Rightarrow \dfrac{1+\cos A}{\sin A}+\dfrac{\sin A}{1+\cos A}
Forming the LCM as (1+cosA)+sinAsinA(1+cosA)\dfrac{\left( 1+\cos A \right)+\sin A}{\sin A\left( 1+\cos A \right)}.
Now finding the fractions, we get the value of the LHS as:

\right)}^{2}}+{{\sin }^{2}}A}{\sin A+\sin A\cos A}$$ Now converting the value of $${{\left( 1+\cos A \right)}^{2}}$$ into [\1+2\cos A+{{\cos }^{2}}A\], we get the numerator as: $$\Rightarrow \dfrac{1+2\cos A+{{\cos }^{2}}A+{{\sin }^{2}}A}{\sin A+\sin A\cos A}$$ Converting the value of $${{\cos }^{2}}A+{{\sin }^{2}}A$$ into 1. $$\Rightarrow \dfrac{1+2\cos A+1}{\sin A+\sin A\cos A}$$ $$\Rightarrow \dfrac{2+2\cos A}{\sin A+\sin A\cos A}$$ Taking the value of $$\sin A$$ common we get the value of the denominator as $$\sin A\left( 1+\cos A \right)$$. We get the rest of the equation as: $$\Rightarrow \dfrac{2\left( 1+\cos A \right)}{\sin A\left( 1+\cos A \right)}=\dfrac{2}{\sin A}$$ $$\Rightarrow \dfrac{2}{\sin A}=2\text{cosec}A$$ **Therefore, the value of the LHS of the equation is $$2\text{cosec}A$$ which is equal to RHS.** Hence, proved. **Note:** Trigonometric values like $${{\cos }^{2}}A+{{\sin }^{2}}A=1$$ and $$\dfrac{1}{\sin A}=\text{cosec}A$$ should be known when solving question as it makes the question solving easier and faster.