Question
Mathematics Question on Inverse Trigonometric Functions
Prove cot(1+sinx−1−sinx1+sinx+1−sinx=2x,x∈[0,4π]
Answer
consider(1+sinx−1−sinx1+sinx+1−sinx
=(1+sinx)2−1−sinx)2(1+sinx+1−sinx)2
=((1+sinx)2−1−sinx)2(1+sinx+1−sinx)2 ( by rationalizing)
=(1+sinx−1+sinx1+sinx)+(1−sinx)+2√(1+sinx)(1−sinx)
=22sinx1+√1−sin2x)=sinx1+cosx=2sin2xcos2x2cos22x
cot2x
=L.H.S=cot-1 (√1+sinx−√1−sinx√1+sinx+√1−sinx =cot-1 (cot2x)= R.H.S