Solveeit Logo

Question

Question: Prove \(\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left...

Prove cos(3π2+x)cos(2π+x)[cot(3π2x)cot(2π+x)]=1\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right)\cot \left( {2\pi + x} \right)} \right] = 1.

Explanation

Solution

Hint : Here, in the given question, we need to prove that cos(3π2+x)cos(2π+x)[cot(3π2x)cot(2π+x)]=1\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right)\cot \left( {2\pi + x} \right)} \right] = 1. Here we are given a trigonometric function, we need to know how a function can be represented in terms of other functions so that we can simplify and prove the given function. For the given question, first we will solve the given functions individually and try to convert them into the simplest form using identities. After this, we will try to represent the cot\cot function in terms of cos\cos and after that we will simplify the given function to prove that LHS is equal to RHS.

Complete step-by-step answer :
To prove: cos(3π2+x)cos(2π+x)[cot(3π2x)cot(2π+x)]=1\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right)\cot \left( {2\pi + x} \right)} \right] = 1.
L.H.S. = cos(3π2+x)cos(2π+x)[cot(3π2x)cot(2π+x)]\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right)\cot \left( {2\pi + x} \right)} \right]
First we will solve, cos(3π2+x)\cos \left( {\dfrac{{3\pi }}{2} + x} \right)
Putting π=180\pi = 180^\circ , we get
=cos(3×1802+x)= \cos \left( {\dfrac{{3 \times 180^\circ }}{2} + x} \right)
On simplification, we get
=cos(270+x)= \cos \left( {270^\circ + x} \right)
It can also be written as,
=cos(36090+x)= \cos \left( {360^\circ - 90^\circ + x} \right)
As we know 360=2π360^\circ = 2\pi , we get
=cos(2π+(x90))= \cos \left( {2\pi + \left( {x - 90^\circ } \right)} \right)
As we know cos(2π+x)=cosx\cos \left( {2\pi + x} \right) = \cos x. Therefore, we get
=cos(x90)= \cos \left( {x - 90^\circ } \right)
On taking negative sign as common, we get
=cos((90x))= \cos \left( { - \left( {90^\circ - x} \right)} \right)
As we know cos(x)=cosx\cos \left( { - x} \right) = \cos x. Therefore, we get
=cos(90x)= \cos \left( {90^\circ - x} \right)
As we know cos(90θ)=sinθ\cos \left( {90^\circ - \theta } \right) = \sin \theta (Here, sin\sin is positive because 90θ90^\circ - \theta lies in the first quadrant, and in first quadrantsin\sin is positive). Therefore, we get
Therefore, we get
=sinx= \sin x
Now, cos(2π+x)=cosx\cos \left( {2\pi + x} \right) = \cos x
Now we solve, cot(3π2x)\cot \left( {\dfrac{{3\pi }}{2} - x} \right)
Putting π=180\pi = 180^\circ
=cot(3×1802x)= \cot \left( {\dfrac{{3 \times 180^\circ }}{2} - x} \right)
On simplification, we get
=cot(270x)= \cot \left( {270^\circ - x} \right)
It can also be written as,
=cot(36090x)= \cot \left( {360^\circ - 90^\circ - x} \right)
As we know 360=2π360^\circ = 2\pi , we get
=cot(2π90x)= \cot \left( {2\pi - 90^\circ - x} \right)
On taking negative sign as common, w get
=cot(2π(x+90))= \cot \left( {2\pi - \left( {x + 90^\circ } \right)} \right)
As we know cot(2πx)=cotx\cot \left( {2\pi - x} \right) = - \cot x. Therefore, we get
=cot(x+90)= - \cot \left( {x + 90^\circ } \right)
As we know cot(90+θ)=tanθ\cot \left( {90^\circ + \theta } \right) = - \tan \theta (Here, tan\tan is negative because 90+θ90^\circ + \theta lies in the second quadrant, and in second quadrant tan\tan is negative). Therefore, we get
=(tanx)= - \left( { - \tan x} \right)
=tanx= \tan x
Now, cot(2π+x)=cotx\cot \left( {2\pi + x} \right) = \cot x
Putting these values in the equation
cos(3π2+x)cos(2π+x)[cot(3π2x)cot(2π+x)]\cos \left( {\dfrac{{3\pi }}{2} + x} \right)\cos \left( {2\pi + x} \right)\left[ {\cot \left( {\dfrac{{3\pi }}{2} - x} \right)\cot \left( {2\pi + x} \right)} \right]
=(sinx)×(cosx)×[tanx+cotx]= \left( {\sin x} \right) \times \left( {\cos x} \right) \times \left[ {\tan x + \cot x} \right]
Now, we will represent tan\tan and cot\cot in terms of sin\sin and cos\cos . As we know tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}. Therefore, we get
=(sinxcosx)×[sinxcosx+cosxsinx]= \left( {\sin x\cos x} \right) \times \left[ {\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}} \right]
On taking LCM, we get
==(sinxcosx)×[sinx×sinx+cosx×cosxcosxsinx]= = \left( {\sin x\cos x} \right) \times \left[ {\dfrac{{\sin x \times \sin x + \cos x \times \cos x}}{{\cos x\sin x}}} \right]
=(sinxcosx)×[sin2x+cos2xsinxcosx]= \left( {\sin x\cos x} \right) \times \left[ {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}} \right]
As we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, thus we get
=(sinxcosx)×[1sinxcosx]= \left( {\sin x\cos x} \right) \times \left[ {\dfrac{1}{{\sin x\cos x}}} \right]
On multiplication, we get
=sinxcosxsinxcosx= \dfrac{{\sin x\cos x}}{{\sin x\cos x}}
On cancelling out common terms, we get
=1= 1
= R.H.S.
Hence proved.

Note : To solve the questions related to trigonometric functions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. We should know signs of trigonometric ratios in different quadrants. The easiest way to memorise the signs of trigonometric ratios in different quadrants is the four-word phrase ‘ALL SCHOOL TO COLLEGE’. The first letter of the first word in the phrase is A, indicating that all trigonometric ratios are positive in the first quadrant. The first letter of the second word in the phrase is S, indicates that sine\sin e and its reciprocal is positive in the second quadrant. The first letter of the third word in the phrase is T, indicates that tangent\tan gent and its reciprocal is positive in the third quadrant. The first letter of the fourth word in the phrase is C, indicates that cosine\cos ine and its reciprocal is positive in the fourth quadrant.