Solveeit Logo

Question

Question: Prove: \( \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \) ....

Prove: cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 .

Explanation

Solution

Hint : We use the formulas for the trigonometric function of multiple angles where cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x and cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 . We also use the cubic form of (ab)3=a33a2b+3ab2b3{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} . We complete the multiplication to find the proof of the given theorem.

Complete step by step solution:
We have to prove that cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 .
We apply the multiple angle formula for the cos where cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x .
We take 2x2x in place of xx . We get cos6x=4cos3(2x)3cos(2x)\cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right) .
Now we replace the value of cos2x\cos 2x with the theorem of cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 .
We have cos6x=4cos3(2x)3cos(2x)=4(2cos2x1)33(2cos2x1)\cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right)=4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) .
We now break the higher power terms into their simplest form.
We have (ab)3=a33a2b+3ab2b3{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} .
Therefore, (2cos2x1)3=8cos6x12cos4x+6cos2x1{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}=8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 .

cos6x=4(2cos2x1)33(2cos2x1) =4(8cos6x12cos4x+6cos2x1)3(2cos2x1) =32cos6x48cos4x+24cos2x46cos2x+3 =32cos6x48cos4x+18cos2x1 \cos 6x =4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) \\\ =4\left( 8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 \right)-3\left( 2{{\cos }^{2}}x-1 \right) \\\ =32{{\cos }^{6}}x-48{{\cos }^{4}}x+24{{\cos }^{2}}x-4-6{{\cos }^{2}}x+3 \\\ =32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \\\

Thus proved, cos6x=32cos6x48cos4x+18cos2x1\cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 .

Note : instead of breaking the multiple angle theorem as \cos 6x=\cos \left\\{ 3\times \left( 2x \right) \right\\} , we can take \cos 6x=\cos \left\\{ 2\times \left( 3x \right) \right\\} . It is the same in both cases and the final proof is also the same.