Question
Question: Prove \(\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}\) is true or false ...
Prove cos48∘⋅cos12∘=83−5 is true or false
A.True
B.False
Solution
In this we use multiple theorem where 2cosAcosB=cos(A+B)+cos(A−B) and for simplifying we will use the value of cos60∘=21and cos36∘=45+1
Complete step-by-step answer:
Given cos48∘⋅cos12∘
We know that 2cosAcosB=cos(A+B)+cos(A−B) substituting A=48∘,B=12∘in formula we get
2cos48∘⋅cos12∘=cos(48+12)+cos(48−12)
So, cos48∘⋅cos12∘=2cos60∘+cos36∘
Substituting cos60∘=21and cos36∘=45+1 ,we get,
⇒221+45+1
On simplifying we get
cos48∘⋅cos12∘=85+3
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
2cosAcosB=cos(A+B)+cos(A−B) 2sinAsinB=cos(A−B)−cos(A+B) 2sinAcosB=sin(A+B)+sin(A−B) 2sinBcosA=sin(A+B)−sin(A−B)
and must not confused in value of cos36∘=45+1