Solveeit Logo

Question

Question: Prove \(\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}\) is true or false ...

Prove cos48cos12=358\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8} is true or false
A.True
B.False

Explanation

Solution

In this we use multiple theorem where 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) and for simplifying we will use the value of cos60=12\cos {60^ \circ } = \dfrac{1}{2}and cos36=5+14\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}

Complete step-by-step answer:
Given cos48cos12\cos {48^ \circ } \cdot \cos {12^ \circ }
We know that 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) substituting A=48,B=12A = {48^ \circ },B = {12^ \circ }in formula we get
2cos48cos12=cos(48+12)+cos(4812)2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)
So, cos48cos12=cos60+cos362\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}
Substituting cos60=12\cos {60^ \circ } = \dfrac{1}{2}and cos36=5+14\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4} ,we get,
12+5+142\Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}
On simplifying we get
cos48cos12=5+38\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}
So, we can say that the given statement is false
Answer is option (B)

Note: some important multiple theorem
2cosAcosB=cos(A+B)+cos(AB) 2sinAsinB=cos(AB)cos(A+B) 2sinAcosB=sin(A+B)+sin(AB) 2sinBcosA=sin(A+B)sin(AB)  2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\\ 2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\\ 2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\\ 2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\\
and must not confused in value of cos36=5+14\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}