Solveeit Logo

Question

Question: Prove \(\cos 3x=4{{\cos }^{3}}x-3\cos x\)?...

Prove cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x?

Explanation

Solution

From the question given we have to prove that cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x. To solve this question, we have to use the simple trigonometric formulas. First, we have to take cos3x\cos 3x . We have to split the 3x3x as 2x+x2x+x and then we have to apply the cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B. After that we have to apply the formulas like cos2x=2cos2x1=12sin2x\cos 2x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x. By further simplifying we will get the right-hand side part. Hence the equation will be proved.

Complete step by step answer:
From the question given we have to prove that
cos3x=4cos3x3cosx\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x
First, we have to take the left-hand side part
The left-hand side part is
cos3x\Rightarrow \cos 3x
Now we have to split the 3x3x as 2x+x2x+x.
By splitting we will get,
cos(2x+x)\Rightarrow \cos \left( 2x+x \right)
As we know that from basic trigonometric identities
cos(A+B)=cosAcosBsinAsinB\Rightarrow \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B
By this formula we can expand the above part
cos(2x+x)=cos2xcosxsin2xsinx\Rightarrow \cos \left( 2x+x \right)=\cos 2x\cos x-\sin 2x\sin x
Again, from the basic formulas of trigonometric identities the above equation can be expanded as
cos2x=2cos2x1=12sin2x\Rightarrow \cos 2x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x
sin2x=2sinxcosx\Rightarrow \sin 2x=2\sin x\cos x
By these formulae we will expand the above part
cos(2x+x)=cos2xcosxsin2xsinx\Rightarrow \cos \left( 2x+x \right)=\cos 2x\cos x-\sin 2x\sin x
cos(2x+x)=(2cos2x1)cosx(2sinxcosx)sinx\Rightarrow \cos \left( 2x+x \right)=\left( 2{{\cos }^{2}}x-1 \right)\cos x-\left( 2\sin x\cos x \right)\sin x
By further simplifying we will get,
cos(2x+x)=2cos3xcosx2sin2xcosx\Rightarrow \cos \left( 2x+x \right)=2{{\cos }^{3}}x-\cos x-2{{\sin }^{2}}x\cos x
Again, from the basic formulas of trigonometric identities we know that
sin2x=1cos2x\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x
By these formulae we will expand the above part
cos3x=2cos3xcosx2cosx(1cos2x)\Rightarrow \cos 3x=2{{\cos }^{3}}x-\cos x-2\cos x\left( 1-{{\cos }^{2}}x \right)
By further simplifying we will get,
cos3x=2cos3xcosx2cosx+2cos3x\Rightarrow \cos 3x=2{{\cos }^{3}}x-\cos x-2\cos x+2{{\cos }^{3}}x
By further simplifying we will get,
cos3x=4cos3x3cosx\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x
Therefore, the right hand side part is equal to the left-hand side.

Note: Students should recall the basic formulas of trigonometry and its identities while doing the above problem. Students should know the formulas like,
cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB sin(AB)=cosAsinBsinAcosB sin(A+B)=cosAsinB+sinAcosB \begin{aligned} & \Rightarrow \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\\ & \Rightarrow \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\\ & \Rightarrow \sin \left( A-B \right)=\cos A\sin B-\sin A\cos B \\\ & \Rightarrow \sin \left( A+B \right)=\cos A\sin B+\sin A\cos B \\\ \end{aligned}