Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: cos145+cos11213=cos13365cos^{-1} \frac45 + cos^{-1} \frac {12}{13} = cos^{-1} \frac {33}{65}

Answer

Let cos-145\frac 45 = x. Then cosx = 45\frac 45 = sin x = 1(45)2\sqrt {1-(\frac45)^2} = 35\frac 35.
tanx = 34\frac 34.     \impliesx = tan-134\frac 34
Therefore cos-145\frac 45 = tan-134\frac 34 …..... (1)
Now, let cos-11213\frac {12}{13} = y.    \impliescos y = 1213\frac {12}{13} = sin y = 513\frac {5}{13}.
therefore tan y = 512\frac {5}{12}= tan-1 512\frac {5}{12}.
therefore cos-11213\frac {12}{13} = tan-1 512\frac {5}{12} …….…. (2)
Let cos-13365\frac {33}{65} = z. cosz = 3365\frac {33}{65}.     \impliessin z = 5665\frac {56}{65}.
therefore tan z = 5665\frac {56}{65}     \impliesz = tan-15665\frac {56}{65}
therefore cos-13365\frac {33}{65} = tan-15665\frac {56}{65} …….... (3)
Now, we will prove that:
LHS = cos-145\frac 45 + cos-1 1213\frac {12}{13}
=tan-134\frac 34 + tan-1512\frac {5}{12} [using(1) and (2)]
=tan-134+512134×512\frac {\frac 34 + \frac {5}{12}}{1- \frac 34 \times \frac {5}{12}} [tan-1x + tan-1y
=tan-1x+y1xy\frac {x+y}{1-xy}
=tan-136+204815\frac {36+20}{48-15}
=tan-15633\frac {56}{33} [by(3)]
=RHS