Question
Mathematics Question on Inverse Trigonometric Functions
Prove: cos−154+cos−11312=cos−16533
Answer
Let cos-154 = x. Then cosx = 54 = sin x = 1−(54)2 = 53.
tanx = 43. ⟹x = tan-143
Therefore cos-154 = tan-143 …..... (1)
Now, let cos-11312 = y.⟹cos y = 1312 = sin y = 135.
therefore tan y = 125= tan-1 125.
therefore cos-11312 = tan-1 125 …….…. (2)
Let cos-16533 = z. cosz = 6533. ⟹sin z = 6556.
therefore tan z = 6556 ⟹z = tan-16556
therefore cos-16533 = tan-16556 …….... (3)
Now, we will prove that:
LHS = cos-154 + cos-1 1312
=tan-143 + tan-1125 [using(1) and (2)]
=tan-11−43×12543+125 [tan-1x + tan-1y
=tan-11−xyx+y
=tan-148−1536+20
=tan-13356 [by(3)]
=RHS