Question
Mathematics Question on Inverse Trigonometric Functions
Prove: cos−11312+sin−153=sin−16556
Answer
Let sin-153 = x. Then, sin x=53 ⟹cos x=1−(53)2 = 54,
therefore tan x=43 ⟹ x = tan-1 43
⟹sin-153 = tan-1 43 ……...... (1)
Now let cos-11312 = y. Then cos y=1312 ⟹sin y=135.
tan y = 125 ⟹ y = tan-1125.
therefore cos-1 1312 = tan-1125 ………......(2)
Let sin-16556 = z. Then sin z = 6556. ⟹cos z = 6533.
tan z = 3356 ⟹z = tan-13356.
so sin-13356 = tan-13356 ……..... (3)
Now, we have:
L.H.S.= cos-11312+sin-153
= tan-1125 + tan-143 [using(1) and (2)]
= tan-11−125.43125+43
= tan-13356
= sin-16556
= R.H.S