Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: cos11213+sin135=sin15665cos^{-1} \frac {12}{13} + sin^{-1} \frac 35 = sin^{-1} \frac {56}{65}

Answer

Let sin-135\frac 35 = x. Then, sin x=35\frac 35     \impliescos x=1(35)2\sqrt {1-(\frac 35)^2} = 45\frac 45,
therefore tan x=34\frac 34     \implies x = tan-1 34\frac 34
    \impliessin-135\frac 35 = tan-1 34\frac 34 ……...... (1)
Now let cos-11213\frac {12}{13} = y. Then cos y=1213\frac {12}{13}     \impliessin y=513\frac {5}{13}.
tan y = 512\frac 5{12}     \implies y = tan-1512\frac 5{12}.
therefore cos-1 1213\frac {12}{13} = tan-1512\frac 5{12} ………......(2)
Let sin-15665\frac {56}{65} = z. Then sin z = 5665\frac {56}{65}.     \impliescos z = 3365\frac {33}{65}.
tan z = 5633\frac {56}{33}     \impliesz = tan-15633\frac {56}{33}.
so sin-15633\frac {56}{33} = tan-15633\frac {56}{33} ……..... (3)
Now, we have:
L.H.S.= cos-11213\frac {12}{13}+sin-135\frac {3}{5}
= tan-1512\frac 5{12} + tan-134\frac 34 [using(1) and (2)]
= tan-1512+341512.34\frac {\frac {5}{12}+ \frac 34}{1- \frac {5}{12}. \frac 34}
= tan-15633\frac {56}{33}
= sin-15665\frac {56}{65}
= R.H.S