Solveeit Logo

Question

Question: Prove by using vector \[\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alp...

Prove by using vector
cos(αβ)=cosαcosβ+sinαsinβ\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta

Explanation

Solution

It is sometimes useful to write a vector vv in terms of its magnitude and argument rather than rectangular form ai^+bj^a\widehat i + b\widehat j. This is done using the sine and cosine functions. The r(cosαi^+sinαj^)r(\cos \alpha \widehat i + \sin \alpha \widehat j) version of vv is called trigonometric form. Since cosαi^+sinαj^=1\,\left| {\cos \alpha \widehat i + \sin \alpha \widehat j} \right| = 1 the trigonometric form expresses vv as a scalar multiple of a unit vector in the same direction as vv.

Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors OP\overrightarrow {OP} and OQ\overrightarrow {OQ} with an angle of

POX=α QOX=β POQ=αβ  \angle POX = \alpha \\\ \angle QOX = \beta \\\ \angle POQ = \alpha - \beta \\\ OP=1 OQ=1  \left| {\overrightarrow {OP} } \right| = 1 \\\ \left| {\overrightarrow {OQ} } \right| = 1 \\\

Now as we have described in hint:0

OP=cosαi^+sinαj^(1) OQ=cosβi^+sinβj^(2)  \overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\\ \overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\\

The scalar product OP\overrightarrow {OP} and OQ\overrightarrow {OQ} of two vectors OP\overrightarrow {OP} and OQ\overrightarrow {OQ} is a number defined by the equation
OPOQ=OPOQcos(αβ)=cos(αβ)(3)\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)
where α\alpha and β\beta is the angle between the vectors.
Also from equation (1) and (2)

OQ=(cosαi^+sinαj^)(cosβi^+sinβj^) OPOQ=cosαi^cosβi^+cosαi^sinβj^+sinαj^cosβi^+sinαj^sinβj^ OPOQ=cosαi^sinβj^+sinαj^cosβi^ OPOQ=cosαsinβ+sinαcosβ(4)  \overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\\ \Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\\ \Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\\ \Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\\

So with the equation (3) and (4)
cos(αβ)=cosαsinβ+sinαcosβ\Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta

Hence Proved.

Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.