Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove 2sin1 35=tan1 2472sin^{-1}\ \frac {3}{5}=tan^{-1}\ \frac {24}{7}

Answer

Let sin-135\frac 35 = x. Then, sinx = 35\frac 35
    \impliescosx = 1(35)2\sqrt {1- (\frac 35)^2} = 45\frac 45,
therefore tanx = 34\frac 34
therefore x = tan-134\frac 34
    \impliessin-135\frac 35=tan-134\frac 34
Now, we have:
LHS = 2sin-135\frac 35
= 2tan-134\frac 34
=tan-12×341(34)2\frac {2 \times \frac 34}{1-(\frac 34)^2} [2 tan-1x = tan-12x1x2\frac {2x}{1-x^2}]
= tan-1(32×167\frac 32 \times \frac {16}{7})
= tan-1247\frac {24}{7}
= RHS