Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove 2tan112+tan117=tan131172\tan^{-1}\frac {1}{2}+\tan^{-1}\frac{1}{7}=\tan^{-1}\frac{31}{17}

Answer

To prove 2tan112+tan117=tan131172\tan^{-1}\frac {1}{2}+\tan^{-1}\frac{1}{7}=\tan^{-1}\frac{31}{17}

LHS= 2tan112+tan1172\tan^{-1}\frac {1}{2}+\tan^{-1}\frac{1}{7}

= tan12.121(12)2+tan117 [2tan1x=tan12x1x2]\tan^{-1} \frac{\frac{2.1}{2}}{1-(\frac{1}{2})^2}+\tan^{-1}\frac{1}{7} \ [2tan^{-1x}=\tan^{-1}\frac{2x}{1-x^2}]

tan11(34)+tan117\tan^{-1}\frac{1}{(\frac{3}{4})}+\tan^{-1}\frac{1}{7}

tan143+tan117\tan^{-1}\frac{4}{3}+\tan^{-1}\frac{1}{7}

= tan143+17143.17\tan^{-1}\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3}.\frac{1}{7}}

=tan1(28+3)21(214)21\tan^{-1}\frac{\frac{(28+3)}{21}}{\frac{(21-4)}{21}}

= tan13117\tan^{-1}\frac{31}{17}=RHS