Question
Mathematics Question on Inverse Trigonometric Functions
Prove 2tan−121+tan−171=tan−11731
Answer
To prove 2tan−121+tan−171=tan−11731
LHS= 2tan−121+tan−171
= tan−11−(21)222.1+tan−171 [2tan−1x=tan−11−x22x]
tan−1(43)1+tan−171
tan−134+tan−171
= tan−11−34.7134+71
=tan−121(21−4)21(28+3)
= tan−11731=RHS