Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: 2 tan1(cos x)=tan1(2 cosec x)2\ tan^{-1}(cos\ x)=tan^{-1}(2\ cosec\ x)

Answer

2 tan-1(cos x) =tan-1(2 cosec x)
    \impliestan-12 cos x1cos2 x\frac {2\ cos\ x}{1-cos^2\ x} = tan-1(2 cosec x) [2tan-1x = tan-12x1x2\frac {2x}{1-x^2}]
\implies$$\frac {2\ cos\ x}{1-cos^2\ x} = 2 cosec x
\implies$$\frac {2\ cos\ x}{sin^2\ x} = 2sin x\frac {2}{sin\ x}
    \impliescos x = sin x
    \impliestan x=1
So, x = π4\frac {\pi}{4}