Question
Mathematics Question on Inverse Trigonometric Functions
Prove: 2 tan−1(cos x)=tan−1(2 cosec x)
Answer
2 tan-1(cos x) =tan-1(2 cosec x)
⟹tan-11−cos2 x2 cos x = tan-1(2 cosec x) [2tan-1x = tan-11−x22x]
\implies$$\frac {2\ cos\ x}{1-cos^2\ x} = 2 cosec x
\implies$$\frac {2\ cos\ x}{sin^2\ x} = sin x2
⟹cos x = sin x
⟹tan x=1
So, x = 4π