Solveeit Logo

Question

Mathematics Question on integral

Prove: 13dxx2(x+1)=23+log23∫_1^3\frac {dx}{x^2(x+1)}=\frac 23+log\frac 23

Answer

Let I=$$∫_1^3\frac {dx}{x^2(x+1)}=\frac 23+log\frac 23

Also, let 1x2(x+1)\frac {1}{x^2(x+1)} = Ax+Bx2+Cx+1\frac Ax+\frac {B}{x^2}+\frac {C}{x+1}

I=Ax(x+1)+B(x+1)+C(x2)⇒I=Ax(x+1)+B(x+1)+C(x^2)

I=Ax2+Ax+Bx+Cx2⇒I=Ax^2+Ax+Bx+Cx^2

Equating the coefficients of x2,x, x^2,x, and constant term, we obtain

A+C=0A+C=0

A+B=0A+B=0

B=1B=1

On solving these equations, we obtain

A=1,C=1, and B=1A=-1,C=1,\ and \ B=1

1x2(x+1)\frac {1}{x^2(x+1)} = 1x+1x2+1x+1-\frac 1x+\frac {1}{x^2}+\frac {1}{x+1}

I⇒I = ∫_1^3$$[-\frac 1x+\frac {1}{x^2}+\frac {1}{x+1}]dx

II= [logx1x+log(x+1)]13[-logx-\frac 1x+log(x+1)]_1^3

II= [log(x+1x)1x]13[log(\frac {x+1}{x})-\frac 1x]_1^3

II= log(43)13log(21)+1log(\frac 43)-\frac 13-log(\frac 21)+1

II= log 4log 3log 2+23 log\ 4-log\ 3-log\ 2+\frac 23

II= log 2log 3+23log\ 2-log\ 3+\frac 23

II= log(23)+23log(\frac 23)+\frac 23

Hence, the given result is proved.