Question
Mathematics Question on integral
Prove: ∫13x2(x+1)dx=32+log32
Answer
Let I=$$∫_1^3\frac {dx}{x^2(x+1)}=\frac 23+log\frac 23
Also, let x2(x+1)1 = xA+x2B+x+1C
⇒I=Ax(x+1)+B(x+1)+C(x2)
⇒I=Ax2+Ax+Bx+Cx2
Equating the coefficients of x2,x, and constant term, we obtain
A+C=0
A+B=0
B=1
On solving these equations, we obtain
A=−1,C=1, and B=1
∴x2(x+1)1 = −x1+x21+x+11
⇒I = ∫_1^3$$[-\frac 1x+\frac {1}{x^2}+\frac {1}{x+1}]dx
I= [−logx−x1+log(x+1)]13
I= [log(xx+1)−x1]13
I= log(34)−31−log(12)+1
I= log 4−log 3−log 2+32
I= log 2−log 3+32
I= log(32)+32
Hence, the given result is proved.