Solveeit Logo

Question

Mathematics Question on integral

Prove: 11x17cos4xdx∫^1_{-1}x^{17}cos^{4}xdx

Answer

Let I=11x17cos4xdxI=∫^1_{-1}x^{17}cos^4xdx
Also,let ƒ(x)=x17cos4xƒ(x)=x^{17}cos^4x
ƒ(x)=(x)17cos4(x)=x17cos4x=ƒ(x)⇒ƒ(-x)=(-x)^{17}cos^4(-x)=-x^{17}cos^4x=-ƒ(x)
Therefore,ƒ(x)ƒ(x)is an odd function.
It is known that if f(x)f(x)is an odd function,thenaaƒ(x)dx=0∫^a_{-a}ƒ(x)dx=0
I=11x17cos4xdx=0∴I=∫^1_{-1}x^{17}cos^4 xdx=0
Hence,the given result is proved.