Question
Mathematics Question on integral
Prove: ∫−11x17cos4xdx
Answer
Let I=∫−11x17cos4xdx
Also,let ƒ(x)=x17cos4x
⇒ƒ(−x)=(−x)17cos4(−x)=−x17cos4x=−ƒ(x)
Therefore,ƒ(x)is an odd function.
It is known that if f(x)is an odd function,then∫−aaƒ(x)dx=0
∴I=∫−11x17cos4xdx=0
Hence,the given result is proved.