Question
Mathematics Question on integral
Prove: ∫01sin−1xdx=2π−1
Answer
Let I=∫01sin−1xdx
⟹I=∫01sin−1x1.dx
Integrating by parts,we obtain
I=[sin−1x.x]01−∫011−x21.xdx
=[xsin−1x]01+21∫011−x2(−2x)dx
Let 1−x2=t−2xdx=dt
When x=0,t=1 and when x=1,t=0
I=[xsin−1x]01+21∫01tdt
=[xsin−1x]01+21[2t]01
=sin−1(1)+[−1]
=2π−1
Hence,the given result is proved.