Solveeit Logo

Question

Mathematics Question on integral

Prove: 01sin1xdx=π21∫^1_0sin^{-1}x\,dx=\frac{π}{2}-1

Answer

Let I=01sin1xdxI=∫^1_0sin^{-1}x\,dx
    I=01sin1x1.dx\implies I=∫^1_0sin^{-1}x\,1.dx
Integrating by parts,we obtain
I=[sin1x.x]010111x2.xdxI=[sin^{-1}x.x]^1_0-∫^1_0\frac{1}{\sqrt{1-x^2}}.xdx
=[xsin1x]01+1201(2x)1x2dx=[xsin^{-1}x]^1_0+\frac{1}{2}∫^1_0\frac{(-2x)}{\sqrt{1-x^2}}dx
Let 1x2=t2xdx=dt1-x^2=t-2xdx=dt
When x=0,t=1x=0,t=1 and when x=1,t=0x=1,t=0
I=[xsin1x]01+1201dttI=[xsin^{-1}x]^1_0+\frac{1}{2}∫_0^1\frac{dt}{\sqrt{t}}
=[xsin1x]01+12[2t]01=[xsin^{-1}x]^1_0+\frac{1}{2}[2\sqrt{t}]_0^1
=sin1(1)+[1]=sin^{-1}(1)+[-\sqrt{1}]
=π21=\frac{π}{2}-1
Hence,the given result is proved.