Solveeit Logo

Question

Mathematics Question on integral

Prove: 01x.ex dx=1∫_0^1x.e^x\ dx=1

Answer

Let I=01x.ex dxI= ∫_0^1x.e^x\ dx

Integrating by parts, we obtain

I=x01exdx01[(ddx(x))exdx]dxI=x∫_0^1e^xdx - ∫_0^1[{(\frac {d}{dx}(x))∫e^xdx}]dx

II = [xex]01[xe^x]_0^1 - 01exdx∫_0^1e^xdx

II= [xex]01[xe^x]_0^1 - [ex]01[e^x]_0^1

II= ee+1e-e+1

II=11

Hence, the given result is proved.