Solveeit Logo

Question

Question: If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is rep. POSL then....

If ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 is rep. POSL then.

Answer

The condition for the equation ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 to represent a pair of straight lines is: abc+2fghaf2bg2ch2=0abc + 2fgh - af^2 - bg^2 - ch^2 = 0

Explanation

Solution

The general second-degree equation ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 represents a pair of straight lines if and only if the determinant of the associated matrix is zero.

The associated matrix is given by: A=(ahghbfgfc)A = \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix}

The condition for the equation to represent a pair of straight lines is det(A)=0\det(A) = 0.

Calculating the determinant: det(A)=abffchhfgc+ghbgf\det(A) = a \begin{vmatrix} b & f \\ f & c \end{vmatrix} - h \begin{vmatrix} h & f \\ g & c \end{vmatrix} + g \begin{vmatrix} h & b \\ g & f \end{vmatrix} det(A)=a(bcf2)h(hcgf)+g(hfgb)\det(A) = a(bc - f^2) - h(hc - gf) + g(hf - gb) det(A)=abcaf2h2c+hgf+ghfg2b\det(A) = abc - af^2 - h^2c + hgf + ghf - g^2b det(A)=abcaf2ch2+2fghbg2\det(A) = abc - af^2 - ch^2 + 2fgh - bg^2

Setting the determinant to zero gives the required condition: abc+2fghaf2bg2ch2=0abc + 2fgh - af^2 - bg^2 - ch^2 = 0