Solveeit Logo

Question

Question: Product of the length of the perpendicular segment from the foci on any tangent to the ellipse \(\fr...

Product of the length of the perpendicular segment from the foci on any tangent to the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 is

A

a2

B

b2

C

a2b2

D

ab

Answer

b2

Explanation

Solution

Equation of tangent is y = mx + a2m2+b2\sqrt{a^{2}m^{2} + b^{2}}.

∴ Product of perpendicular from foci

=a2m2+b2+maem2+1a2m2+b2maem2+1=a2m2+b2m2a2e2m2+1\left| \frac{\sqrt{a^{2}m^{2} + b^{2} +}mae}{\sqrt{m^{2} + 1}} \right|\left| \frac{\sqrt{a^{2}m^{2} + b^{2} -}mae}{\sqrt{m^{2} + 1}} \right| = \frac{a^{2}m^{2} + b^{2} - m^{2}a^{2}e^{2}}{m^{2} + 1} = b2. [Q b2 = a2 (1 - e2)]