Solveeit Logo

Question

Question: Product of all the solution of equation $x^{\log_{10}x} = 100 + 2^{\log_2 3} - 3^{\log_3 2})$ is...

Product of all the solution of equation xlog10x=100+2log233log32)x^{\log_{10}x} = 100 + 2^{\log_2 3} - 3^{\log_3 2}) is

A

110\frac{1}{10}

B

1

C

10

D

100

Answer

1

Explanation

Solution

First, simplify the equation using the property alogab=ba^{\log_a b} = b:

2log23=32^{\log_2 3} = 3 and 3log32=23^{\log_3 2} = 2.

So, 100+32=101100 + 3 - 2 = 101. The equation becomes:

xlog10x=101x^{\log_{10}x} = 101

Let y=log10xy = \log_{10} x. Then log10(xlog10x)=(log10x)2=y2\log_{10}(x^{\log_{10} x}) = (\log_{10} x)^2 = y^2. Applying log10\log_{10} on both sides:

y2=log10101y^2 = \log_{10} 101

This gives two solutions for yy:

y=±log10101y = \pm \sqrt{\log_{10} 101}

Since x=10yx = 10^y, the solutions are:

x1=10log10101x_1 = 10^{\sqrt{\log_{10}101}} and x2=10log10101x_2 = 10^{-\sqrt{\log_{10}101}}

The product of the solutions is:

x1x2=10log1010110log10101=100=1x_1 \cdot x_2 = 10^{\sqrt{\log_{10}101}} \cdot 10^{-\sqrt{\log_{10}101}} = 10^{0} = 1