Solveeit Logo

Question

Question: Find the position of the x-coordinate of the centre of mass of a thin non-uniform right triangular p...

Find the position of the x-coordinate of the centre of mass of a thin non-uniform right triangular plate of height b and base L (see figure) whose surface mass density is given by σ(x,y)=σ0xy\sigma_{(x,y)} = \sigma_0 xy. σ0\sigma_0 is a constant.

A

L3\frac{L}{3}

B

2L5\frac{2L}{5}

C

L2\frac{L}{2}

D

3L5\frac{3L}{5}

Answer

2L5\frac{2L}{5}

Explanation

Solution

The x-coordinate of the center of mass (XCMX_{CM}) is given by XCM=xdmdmX_{CM} = \frac{\int x \, dm}{\int dm}, where dm=σdAdm = \sigma \, dA is the mass of an infinitesimal area element dAdA, and σ\sigma is the surface mass density. The triangular plate is defined by the vertices (0,0), (L,0), and (0,b). The equation of the hypotenuse is y=b(1x/L)y = b(1 - x/L). The surface mass density is given by σ(x,y)=σ0xy\sigma(x,y) = \sigma_0 xy.

We can set up the integrals over the area of the triangle. For an element dA=dxdydA = dx \, dy, the limits of integration are 0xL0 \le x \le L and 0yb(1x/L)0 \le y \le b(1 - x/L).

  1. Calculate the total mass (M): M=AσdA=0L0b(1x/L)σ0xydydxM = \iint_A \sigma \, dA = \int_{0}^{L} \int_{0}^{b(1 - x/L)} \sigma_0 xy \, dy \, dx First, integrate with respect to y: 0b(1x/L)σ0xydy=σ0x[y22]0b(1x/L)=σ0xb22(1xL)2\int_{0}^{b(1 - x/L)} \sigma_0 xy \, dy = \sigma_0 x \left[ \frac{y^2}{2} \right]_{0}^{b(1 - x/L)} = \sigma_0 x \frac{b^2}{2} \left(1 - \frac{x}{L}\right)^2 Now, integrate with respect to x: M=0Lσ0b22x(1xL)2dxM = \int_{0}^{L} \sigma_0 \frac{b^2}{2} x \left(1 - \frac{x}{L}\right)^2 \, dx Let u=1x/Lu = 1 - x/L, so x=L(1u)x = L(1-u) and dx=Ldudx = -L \, du. When x=0x=0, u=1u=1; when x=Lx=L, u=0u=0. M=σ0b2L2210(1u)u2(du)=σ0b2L2201(u2u3)duM = \sigma_0 \frac{b^2 L^2}{2} \int_{1}^{0} (1-u) u^2 (-du) = \sigma_0 \frac{b^2 L^2}{2} \int_{0}^{1} (u^2 - u^3) \, du M=σ0b2L22[u33u44]01=σ0b2L22(1314)=σ0b2L224M = \sigma_0 \frac{b^2 L^2}{2} \left[ \frac{u^3}{3} - \frac{u^4}{4} \right]_{0}^{1} = \sigma_0 \frac{b^2 L^2}{2} \left(\frac{1}{3} - \frac{1}{4}\right) = \sigma_0 \frac{b^2 L^2}{24}

  2. Calculate the moment about the y-axis (xdm\int x \, dm): xdm=AxσdA=0L0b(1x/L)x(σ0xy)dydx\int x \, dm = \iint_A x \sigma \, dA = \int_{0}^{L} \int_{0}^{b(1 - x/L)} x (\sigma_0 xy) \, dy \, dx =0Lσ0x20b(1x/L)ydydx= \int_{0}^{L} \sigma_0 x^2 \int_{0}^{b(1 - x/L)} y \, dy \, dx First, integrate with respect to y: 0b(1x/L)ydy=[y22]0b(1x/L)=b22(1xL)2\int_{0}^{b(1 - x/L)} y \, dy = \left[ \frac{y^2}{2} \right]_{0}^{b(1 - x/L)} = \frac{b^2}{2} \left(1 - \frac{x}{L}\right)^2 Now, integrate with respect to x: xdm=0Lσ0x2b22(1xL)2dx\int x \, dm = \int_{0}^{L} \sigma_0 x^2 \frac{b^2}{2} \left(1 - \frac{x}{L}\right)^2 \, dx Using the substitution u=1x/Lu = 1 - x/L: xdm=σ0b2L3201(1u)2u2du=σ0b2L3201(u22u3+u4)du\int x \, dm = \sigma_0 \frac{b^2 L^3}{2} \int_{0}^{1} (1-u)^2 u^2 \, du = \sigma_0 \frac{b^2 L^3}{2} \int_{0}^{1} (u^2 - 2u^3 + u^4) \, du xdm=σ0b2L32[u332u44+u55]01=σ0b2L32(1312+15)\int x \, dm = \sigma_0 \frac{b^2 L^3}{2} \left[ \frac{u^3}{3} - \frac{2u^4}{4} + \frac{u^5}{5} \right]_{0}^{1} = \sigma_0 \frac{b^2 L^3}{2} \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5}\right) xdm=σ0b2L32(1015+630)=σ0b2L360\int x \, dm = \sigma_0 \frac{b^2 L^3}{2} \left(\frac{10 - 15 + 6}{30}\right) = \sigma_0 \frac{b^2 L^3}{60}

  3. Calculate XCMX_{CM}: XCM=xdmM=σ0b2L360σ0b2L224=L360×24L2=24L60=2L5X_{CM} = \frac{\int x \, dm}{M} = \frac{\sigma_0 \frac{b^2 L^3}{60}}{\sigma_0 \frac{b^2 L^2}{24}} = \frac{L^3}{60} \times \frac{24}{L^2} = \frac{24L}{60} = \frac{2L}{5}