Question
Question: The amplitude of an oscillating particle of mass 40 g decays to 10 cm from 100 cm in 20 s. Compute (...
The amplitude of an oscillating particle of mass 40 g decays to 10 cm from 100 cm in 20 s. Compute (a) Relaxation time and (b) Damping force when the velocity is 50 cm/s.

Relaxation time: τ=ln(10)20 s≈8.69 s; Damping force: Fd=200ln(10) dynes≈461 dynes
Relaxation time: τ=ln(20)10 s≈4.34 s; Damping force: Fd=100ln(20) dynes≈300 dynes
Relaxation time: τ=20ln(10) s≈46.05 s; Damping force: Fd=40ln(10) dynes≈92.1 dynes
Relaxation time: τ=ln(10)100 s≈43.43 s; Damping force: Fd=50ln(10) dynes≈115.1 dynes
(a) Relaxation time: τ=ln(10)20 s≈8.69 s (b) Damping force when velocity is 50 cm/s: $F_d = 200 \ln(10) \text{ dynes} \approx 461 \text{ dynes}
Solution
The amplitude of a damped oscillating system decays exponentially with time, following the equation A(t)=A0e−γt. The relaxation time τ is the time taken for the amplitude to decay to 1/e of its initial value, which means τ=1/γ. The damping force is given by Fd=−bv, where b is the damping coefficient and v is the velocity. The damping coefficient b is related to the damping constant γ and the mass m of the particle by b=2mγ.
-
Calculate the damping constant (γ): Given: Initial amplitude A0=100 cm, final amplitude A(t)=10 cm, and time t=20 s. Using A(t)=A0e−γt: 10 cm=100 cm×e−γ×20 s 0.1=e−20γ Taking the natural logarithm of both sides: ln(0.1)=−20γ −ln(10)=−20γ γ=20ln(10) s−1
-
Calculate the relaxation time (τ): The relaxation time is τ=1/γ. τ=20ln(10) s−11=ln(10)20 s
-
Calculate the damping coefficient (b): Given mass m=40 g. The relationship is b=2mγ. b=2×(40 g)×(20ln(10) s−1) b=4ln(10) g/s
-
Calculate the damping force (Fd): The damping force is Fd=bv (magnitude). Given velocity v=50 cm/s. Fd=(4ln(10) g/s)×(50 cm/s) Fd=200ln(10) g cm/s2 Fd=200ln(10) dynes
Using ln(10)≈2.3026: (a) τ≈2.302620≈8.686 s (b) Fd≈200×2.3026≈460.52 dynes