Question
Question: Given \(0<\alpha ,\beta <\pi \) and \(\cos \alpha +\cos \beta -\cos (\alpha -\beta )=\frac{3}{2}\)...
Given 0<α,β<π and cosα+cosβ−cos(α−β)=23
No Solution
Solution
The given equation is: cosα+cosβ−cos(α−β)=23
First, expand cos(α−β): cos(α−β)=cosαcosβ+sinαsinβ
Substitute this into the equation: cosα+cosβ−(cosαcosβ+sinαsinβ)=23 cosα+cosβ−cosαcosβ−sinαsinβ=23
To simplify, multiply the entire equation by 2: 2cosα+2cosβ−2cosαcosβ−2sinαsinβ=3
Rearrange the terms and move the constant to the left side: 2cosα+2cosβ−2cosαcosβ−2sinαsinβ−3=0
Consider the expression: (cosα−1)2+(cosβ−1)2+(sinα−sinβ)2=0
This identity implies that each term must be zero, because squares of real numbers are non-negative. So, cosα−1=0⟹cosα=1 cosβ−1=0⟹cosβ=1 sinα−sinβ=0⟹sinα=sinβ
Let's check if this satisfies the given conditions 0<α,β<π. If cosα=1, then α=2nπ for integer n. Since 0<α<π, there is no value of α such that cosα=1. Similarly, if cosβ=1, then β=2mπ for integer m. Since 0<β<π, there is no value of β such that cosβ=1.
This means that the expression (cosα−1)2+(cosβ−1)2+(sinα−sinβ)2 cannot be zero under the given conditions.
Let's verify the expansion of (cosα−1)2+(cosβ−1)2+(sinα−sinβ)2: cos2α−2cosα+1+cos2β−2cosβ+1+sin2α−2sinαsinβ+sin2β =(cos2α+sin2α)+(cos2β+sin2β)−2cosα−2cosβ−2sinαsinβ+2 =1+1−2cosα−2cosβ−2sinαsinβ+2 =4−2cosα−2cosβ−2sinαsinβ
Now, compare this with the equation derived from the problem: 2cosα+2cosβ−2cosαcosβ−2sinαsinβ−3=0 So, −2cosα−2cosβ−2sinαsinβ=3−2cosαcosβ
Substitute this into the expanded identity: 4+(3−2cosαcosβ)=0 7−2cosαcosβ=0 2cosαcosβ=7 cosαcosβ=27
This is impossible, as the maximum value for cosαcosβ is 1×1=1. Since 27>1, there are no real values of α and β that satisfy this condition.
Therefore, the given equation has no solution for 0<α,β<π.