Solveeit Logo

Question

Question: Principal Argument of complex number \(\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{- 2i( - \sqrt{3} + i)}\...

Principal Argument of complex number (1+i)5(1+3i)22i(3+i)\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{- 2i( - \sqrt{3} + i)} is–

A

19π12\frac{19\pi}{12}

B

7π12\frac{- 7\pi}{12}

C

5π12\frac{- 5\pi}{12}

D

5π12\frac{5\pi}{12}

Answer

5π12\frac{- 5\pi}{12}

Explanation

Solution

Sol. z = (1+i)5(1+3i)22i(3i)\frac{(1 + i)^{5}(1 + \sqrt{3}i)^{2}}{2i(\sqrt{3} - i)}

arg z = arg (1+ i)5 +

arg (1 + 3\sqrt{3}i)2 – arg (2i) – arg (3\sqrt{3}–i)

= 5π4\frac{5\pi}{4}+ 2π3\frac{2\pi}{3}(π2)\left( \frac{\pi}{2} \right)(π6)\left( \frac{- \pi}{6} \right) = (19π12)\left( \frac{19\pi}{12} \right)

\ Principal argument = – (2π19π12)\left( 2\pi - \frac{19\pi}{12} \right) = 5π12\frac{- 5\pi}{12}