Solveeit Logo

Question

Question: Primary voltage is *V<sub>p</sub>*, resistance of the primary winding is *R<sub>p</sub>*. Turns in p...

Primary voltage is Vp, resistance of the primary winding is Rp. Turns in primary and secondary are respectively Np

and Ns then secondary current in terms of primary voltage and secondary voltage respectively will be

A

VpNpRpNs,VsNp2RpNs2\frac{V_{p}N_{p}}{R_{p}N_{s}},\frac{V_{s}N_{p}^{2}}{R_{p}N_{s}^{2}}

B

VpNp2RpNs,Vs2Np2RpNs2\frac{V_{p}N_{p}^{2}}{R_{p}N_{s}},\frac{V_{s}^{2}N_{p}^{2}}{R_{p}N_{s}^{2}}

C

VpNpRp2Ns,VsN2Rp2Ns2\frac{V_{p}N_{p}}{R_{p}^{2}N_{s}},\frac{V_{s}N^{2}}{R_{p}^{2}N_{s}^{2}}

D

VpNp2RpNs2,Vs2NpRp2Ns\frac{V_{p}N_{p}^{2}}{R_{p}N_{s}^{2}},\frac{V_{s}^{2}N_{p}}{R_{p}^{2}N_{s}}

Answer

VpNpRpNs,VsNp2RpNs2\frac{V_{p}N_{p}}{R_{p}N_{s}},\frac{V_{s}N_{p}^{2}}{R_{p}N_{s}^{2}}

Explanation

Solution

isip=NpNs\frac{i_{s}}{i_{p}} = \frac{N_{p}}{N_{s}}

Now, according to the information given in the problem, ip can be calculated by using the formula, V = iR so is=VpRp×NpNsi_{s} = \frac{V_{p}}{R_{p}} \times \frac{N_{p}}{N_{s}}

(This is the secondary current in terms of Vp)

Now to rearrange the result obtained above, in terms of secondary voltage, we must replace the term of Vp in the above result by Vs. We know that VpVs=NpNs\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}}; Vp=VsNpNsV_{p} = \frac{V_{s}N_{p}}{N_{s}}, Substituting this in equation (i) is=VsRpNp2Ns2i_{s} = \frac{V_{s}}{R_{p}}\frac{N_{p}^{2}}{N_{s}^{2}}

η=PoutPin×100=PoutVpip×100=140240×0.7×100=83.3%.\eta = \frac{P_{out}}{P_{in}} \times 100 = \frac{P_{out}}{V_{p}i_{p}} \times 100 = \frac{140}{240 \times 0.7} \times 100 = 83.3\%.