Solveeit Logo

Question

Physics Question on Dimensional Analysis

Pressure gradient has the same dimensions as that of

A

velocity gradient

B

potential gradient

C

energy gradient

D

None of these

Answer

None of these

Explanation

Solution

Pressure gradient = px=N/m2m\frac{ \triangle p }{ \triangle x } = \frac{ N / m^2 }{ m } Dimensionsof(px)=[MLT2]/[L2][L]\therefore \, Dimensions \, of \bigg( \frac{ \triangle p }{ \triangle x }\bigg) = \frac{ [ MLT^{ - 2} ] / [ L^2 ] }{ [ L ] } = [ML2T2][ ML^{ - 2} T^{ - 2} ] Dimension of velocity gradient = [vx]=m/sm=[LT1][l]\bigg[- \frac{ \triangle v }{ \triangle x }\bigg] = \frac{ m / s}{ m } = \frac{ [ LT^{ - 1} ] }{ [ l ] } = [M0L0T1][ M^0 L^0 T^{ - 1 } ] Dimensions of potential gradient = (Vx)=W/Qx\bigg(- \frac{ \triangle V }{ \triangle x }\bigg) = \frac{ \triangle W / Q }{ \triangle x } = [MLT2][L][AT][L]\frac{ [ MLT^{ - 2} ] [ L ] }{ [ AT ] [ L ] } = [MLT3A1][ MLT^{ - 3} A^{ - 1} ]b Energy gradient = Ex=Nmm\frac{ \triangle E }{ \triangle x } = \frac{ Nm }{ m } \therefore Dimensions of (px)=[MLT2]/[L][L]\bigg( \frac{ \triangle p }{ \triangle x }\bigg) = \frac{ [ MLT^{ - 2} ] / [ L] }{ [ L ] } = [MLT2][ MLT^{ - 2} ] As observed from above results, we see that none of the dimensions are same as of pressure gradient.