Solveeit Logo

Question

Question: Prepare the truth table for the following statement patterns \(\begin{aligned} & \left( i \rig...

Prepare the truth table for the following statement patterns
(i)[(pq)q]p (ii)(pq)p (iii)(pq)(pq) (iv)(pr)(qp) (v)(pq)(rp) \begin{aligned} & \left( i \right)\left[ \left( p\to q \right)\wedge q \right]\to p \\\ & \left( ii \right)\left( p\wedge q \right)\to \sim p \\\ & \left( iii \right)\left( p\to q \right)\leftrightarrow \left( \sim p\vee q \right) \\\ & \left( iv \right)\left( p\leftrightarrow r \right)\wedge \left( q\leftrightarrow p \right) \\\ & \left( v \right)\left( p\vee \sim q \right)\to \left( r\wedge p \right) \\\ \end{aligned}

Explanation

Solution

To solve this question, we should know the basic truth tables. Truth table is a table which tells that the statement containing a combination of statements is true or false based on the elemental statements it is made of. The basic truth tables are p or q, p and q, p implies q, p double implies q and the notations are pq,pq,pq,pqp\vee q,p\wedge q,p\to q,p\leftrightarrow q. There is another term called negation of a statement p and it is denoted as p\sim p. In two elements p, q a total of four combinations are possible, which are both p and q are true, p is true and q is false, p is false and q is true, both p and q are false. The truth tables for the above statements are listed above. We shall denote true as T and false as F.

pqp\sim ppqp\vee qpqp\wedge qpqp\to qpqp\leftrightarrow q
TTFTTTT
TFFTFFF
FTTTFTF
FFTFFTT

Using these tables, we can find the values of each of the statements asked in the question. For example let us consider [(pq)q]p\left[ \left( p\to q \right)\wedge q \right]\to p. We should first evaluate the value of pqp\to q and then pqp\to q as a single statement s and write the condition for sqs\wedge q and then use it further. The main key is to take the process step by step evaluating the statements in the function which are in brackets.

Complete step by step answer:
In our question, we are asked different combinations of three statements p and q and r. First, we shall know the basic truth tables which are pq,pq,pq,pqp\vee q,p\wedge q,p\to q,p\leftrightarrow q. Let us consider true as T and false as F.

pqp\sim ppqp\vee qpqp\wedge qpqp\to qpqp\leftrightarrow q
TTFTTTT
TFFTFFF
FTTTFTF
FFTFFTT

Let us consider the statement [(pq)q]p\left[ \left( p\to q \right)\wedge q \right]\to p. To evaluate these kinds of complex statements, we should proceed step by step. First, we should evaluate pqp\to q and then we should use this value to evaluate (pq)q\left( p\to q \right)\wedge q, then the final statement.

pqpqp\to q(pq)q\left( p\to q \right)\wedge qp[(pq)q]p\left[ \left( p\to q \right)\wedge q \right]\to p
TTTTTT
TFFFTT
FTTTFF
FFTFFT

So, finally, we can write that

pq[(pq)q]p\left[ \left( p\to q \right)\wedge q \right]\to p
TTT
TFT
FTF
FFT

Let us consider
(pq)p\left( p\wedge q \right)\to \sim p

pqpqp\wedge qp\sim p(pq)p\left( p\wedge q \right)\to \sim p
TTTFF
TFFFT
FTFTT
FFFTT

Finally, we can write that

pq(pq)p\left( p\wedge q \right)\to \sim p
TTF
TFT
FTT
FFT

Let us consider (pq)(pq)\left( p\to q \right)\leftrightarrow \left( \sim p\vee q \right)

pqp\sim ppqp\to qpq\sim p\vee q(pq)(pq)\left( p\to q \right)\leftrightarrow \left( \sim p\vee q \right)
TTFTTT
TFFFFT
FTTTTT
FFTTTT

Finally, we can write that

pq(pq)(pq)\left( p\to q \right)\leftrightarrow \left( \sim p\vee q \right)
TTT
TFT
FTT
FFT

Let us consider (pr)(qp)\left( p\leftrightarrow r \right)\wedge \left( q\leftrightarrow p \right)
When there are three statements, a total of 8 combinations are possible. We shall evaluate the above statement for the possible 8 cases.

pqrprp\leftrightarrow rqpq\leftrightarrow p(pr)(qp)\left( p\leftrightarrow r \right)\wedge \left( q\leftrightarrow p \right)
TTTTTT
TTFFTF
TFTTFF
TFFFFF
FTTFFF
FTFTFF
FFTFTF
FFFTTT

Finally, we can write that

pqr(pr)(qp)\left( p\leftrightarrow r \right)\wedge \left( q\leftrightarrow p \right)
TTTT
TTFF
TFTF
TFFF
FTTF
FTFF
FFTF
FFFT

Let us consider (pq)(rp)\left( p\vee \sim q \right)\to \left( r\wedge p \right)

pqrq\sim qpqp\vee \sim qrpr\wedge p(pq)(rp)\left( p\vee \sim q \right)\to \left( r\wedge p \right)
TTTFTTT
TTFFTFF
TFTTTTT
TFFTTFF
FTTFFFT
FTFFFFT
FFTTTFF
FFFTTFF

We can write that

pqr(pq)(rp)\left( p\vee \sim q \right)\to \left( r\wedge p \right)
TTTT
TTFF
TFTT
TFFF
FTTT
FTFT
FFTF
FFFF

\therefore Hence, we evaluated all the required statements.

Note: In these types of problems related to truth tables, the order in which we evaluate the statement plays a major role. The statements within the brackets should be evaluated first and then, we should proceed to the statements which are outside the brackets. For example, the truth value of the statement (pq)p\left( p\wedge q \right)\to \sim p is different from the statement p(qp)p\wedge \left( q\to \sim p \right) . The value changes when we change the order of evaluation. That is why the brackets have a higher importance in these statements.