Solveeit Logo

Question

Question: Predict whether the following reactions occur under standard state conditions. i) Oxidation of \({...

Predict whether the following reactions occur under standard state conditions.
i) Oxidation of Ag(s){\text{A}}{{\text{g}}_{\left( {\text{s}} \right)}} by Cl(g){\text{C}}{{\text{l}}_{\left( {\text{g}} \right)}}. EAg0=0.8 V, ECl20=1.36 V{\text{E}}_{{\text{Ag}}}^{\text{0}} = 0.8{\text{ V, E}}_{{\text{C}}{{\text{l}}_2}}^{\text{0}} = 1.36{\text{ V}}
ii) Reduction of Fe3+{\text{F}}{{\text{e}}^{3 + }} to Fe2+{\text{F}}{{\text{e}}^{2 + }} by Au(s){\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}}. EFe3+,Fe2+0=0.77 V, EAu0=1.4 V{\text{E}}_{{\text{F}}{{\text{e}}^{3 + }},{\text{F}}{{\text{e}}^{2 + }}}^{\text{0}} = 0.77{\text{ V, E}}_{{\text{Au}}}^{\text{0}} = 1.4{\text{ V}}

Explanation

Solution

We have to predict if the given reactions occur under standard conditions i.e. we have to predict if the given reaction is spontaneous. If the standard potential of the reaction is positive then the reaction is spontaneous and occurs under standard state conditions.

Formula Used: Ereaction0=Ereduction0Eoxidation0{\text{E}}_{{\text{reaction}}}^{\text{0}} = {\text{E}}_{{\text{reduction}}}^{\text{0}} - {\text{E}}_{{\text{oxidation}}}^{\text{0}}

Complete step-by-step solution :
i) We are given that oxidation of Ag(s){\text{A}}{{\text{g}}_{\left( {\text{s}} \right)}} occurs by Cl(g){\text{C}}{{\text{l}}_{\left( {\text{g}} \right)}}. The reaction is as follows:
2Ag(s)+Cl2(g)2Ag(aq)++2Cl(aq){\text{2A}}{{\text{g}}_{\left( {\text{s}} \right)}} + {\text{C}}{{\text{l}}_{{\text{2}}\left( {\text{g}} \right)}} \to {\text{2Ag}}_{\left( {{\text{aq}}} \right)}^ + + {\text{2Cl}}_{\left( {{\text{aq}}} \right)}^ -
In the given reaction, Ag(s){\text{A}}{{\text{g}}_{\left( {\text{s}} \right)}} is getting oxidised and Cl(g){\text{C}}{{\text{l}}_{\left( {\text{g}} \right)}} is getting reduced. The reactions are as follows:
Oxidation: 2Ag(s)2Ag(aq)++2e{\text{2A}}{{\text{g}}_{\left( {\text{s}} \right)}} \to {\text{2Ag}}_{\left( {{\text{aq}}} \right)}^ + + 2{{\text{e}}^ - }
Reduction: Cl2(g)+2e2Cl(aq){\text{C}}{{\text{l}}_{{\text{2}}\left( {\text{g}} \right)}} + 2{{\text{e}}^ - } \to 2{\text{Cl}}_{\left( {{\text{aq}}} \right)}^ -
We are given that EAg0=0.8 V{\text{E}}_{{\text{Ag}}}^{\text{0}} = 0.8{\text{ V}} and ECl20=1.36 V{\text{E}}_{{\text{C}}{{\text{l}}_2}}^{\text{0}} = 1.36{\text{ V}}.
The expression for standard potential of the reaction is as follows:
Ereaction0=Ereduction0Eoxidation0{\text{E}}_{{\text{reaction}}}^{\text{0}} = {\text{E}}_{{\text{reduction}}}^{\text{0}} - {\text{E}}_{{\text{oxidation}}}^{\text{0}}
Substitute 1.36 V1.36{\text{ V}} for the standard reduction potential, 0.8 V0.8{\text{ V}} for the standard oxidation potential and solve for the standard potential of the reaction. Thus,
Ereaction0=1.36 V0.8 V{\text{E}}_{{\text{reaction}}}^{\text{0}} = 1.36{\text{ V}} - 0.8{\text{ V}}
Ereaction0=+0.56 V{\text{E}}_{{\text{reaction}}}^{\text{0}} = + 0.56{\text{ V}}
Thus, the standard potential of the reaction is +0.56 V + 0.56{\text{ V}}. The value of standard potential of the reaction is positive. Thus, the reaction is spontaneous and occurs under standard conditions.
Thus, oxidation of Ag(s){\text{A}}{{\text{g}}_{\left( {\text{s}} \right)}} by Cl(g){\text{C}}{{\text{l}}_{\left( {\text{g}} \right)}} occurs under standard conditions.

ii) We are given that reduction of Fe3+{\text{F}}{{\text{e}}^{3 + }} to Fe2+{\text{F}}{{\text{e}}^{2 + }} occurs by Au(s){\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}}. The reaction is as follows:
Au(s)+Fe3+Au++Fe2+{\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}} + {\text{F}}{{\text{e}}^{3 + }} \to {\text{A}}{{\text{u}}^ + } + {\text{F}}{{\text{e}}^{2 + }}
In the given reaction, Au(s){\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}} is getting oxidised and Fe3+{\text{F}}{{\text{e}}^{3 + }} is getting reduced. The reactions are as follows:
Oxidation: Au(s)Au++e{\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}} \to {\text{A}}{{\text{u}}^ + } + {{\text{e}}^ - }
Reduction: Fe3++eFe2+{\text{F}}{{\text{e}}^{3 + }} + {{\text{e}}^ - } \to {\text{F}}{{\text{e}}^{2 + }}
We are given that EFe3+,Fe2+0=0.77 V{\text{E}}_{{\text{F}}{{\text{e}}^{3 + }},{\text{F}}{{\text{e}}^{2 + }}}^{\text{0}} = 0.77{\text{ V}} and EAu0=1.4 V{\text{E}}_{{\text{Au}}}^{\text{0}} = 1.4{\text{ V}}.
The expression for standard potential of the reaction is as follows:
Ereaction0=Ereduction0Eoxidation0{\text{E}}_{{\text{reaction}}}^{\text{0}} = {\text{E}}_{{\text{reduction}}}^{\text{0}} - {\text{E}}_{{\text{oxidation}}}^{\text{0}}
Substitute 0.77 V0.77{\text{ V}} for the standard reduction potential, 1.4 V1.4{\text{ V}} for the standard oxidation potential and solve for the standard potential of the reaction. Thus,
Ereaction0=0.77 V1.4 V{\text{E}}_{{\text{reaction}}}^{\text{0}} = 0.77{\text{ V}} - 1.4{\text{ V}}
Ereaction0=0.63 V{\text{E}}_{{\text{reaction}}}^{\text{0}} = - 0.63{\text{ V}}
Thus, the standard potential of the reaction is 0.63 V - 0.63{\text{ V}}. The value of standard potential of the reaction is negative. Thus, the reaction is nonspontaneous and does not occur under standard conditions.
Thus, reduction of Fe3+{\text{F}}{{\text{e}}^{3 + }} to Fe2+{\text{F}}{{\text{e}}^{2 + }} by Au(s){\text{A}}{{\text{u}}_{\left( {\text{s}} \right)}} does not occur under standard conditions.

Note: The spontaneous reaction does not require an external source to occur. The positive value of Ereaction0{\text{E}}_{{\text{reaction}}}^{\text{0}} indicates that the cell is feasible. The non-spontaneous reaction requires an external source to occur. The negative value of Ereaction0{\text{E}}_{{\text{reaction}}}^{\text{0}} indicates that the cell is not feasible.