Solveeit Logo

Question

Chemistry Question on Equilibrium

Predict expression from α in terms of KeqK_{eq} and concentration C :

A2B3(aq)2A3(aq)+3B2(aq)A_2 B_3(aq) \leftrightharpoons 2{A_3} (aq)+3B_{{2-}}(aq)

A

(Keq108C4)15\left(\frac{{K_{eq}}}{{108C^4}}\right)^{\frac{1}{5}}

B

(Keq5C4)15(\frac{K_{eq}}{5C^4})^\frac{1}{5}

C

(4Keq5C4)15(\frac{4K_{eq}}{5C^4})^\frac{1}{5}

D

(9Keq108C4)15(\frac{9K_{eq}}{108C^4})^\frac{1}{5}

Answer

(Keq108C4)15\left(\frac{{K_{eq}}}{{108C^4}}\right)^{\frac{1}{5}}

Explanation

Solution

The expression in terms of αα (degree of dissociation), KeqK_{eq} (equilibrium constant), and concentration C for the given reaction A2B3(aq)2A3(aq)+3B2(aq)A_2 B_3(aq) \leftrightharpoons 2{A_3} (aq)+3B_{{2-}}(aq) can be derived as follows:

Let's assume the initial concentration of A2B3A_2B_3 is 'C'. At equilibrium, if α is the degree of dissociation, then the concentration of A2B3A_{2}B_{3} will be (1α)(1-α) C, and the concentrations of A3A_3 and B2B_{2-} will be 2αC2αC and 3αC3αC, respectively.

The equilibrium constant (KeqK_{eq}) for the reaction is given by:

KeqK_{eq} = ([A3]2[B2]3)[A2B3]\frac{([A_3]^2[B_{2-}]^3) }{ [A_2B_3]}

Substituting the concentrations:

KeqK_{eq} =[(2αC)2×(3αC)3][(1α)C]\frac{ [(2αC)^2 \times (3αC)^3] }{ [(1 - α)C]}

Simplifying:

Keq=(4α2×27α3)(1α)K_{eq} = \frac{(4α^2 \times 27α^3) }{ (1 - α)}

Keq=(108α5)(1α)K_{eq} = \frac{(108α^5) }{ (1 - α)}

To express this equation in terms of α, KeqK_{eq}, and concentration C, we can rearrange it as:

(Keq108C4)15=α\left(\frac{{K_{eq}}}{{108C^4}}\right)^{\frac{1}{5}} = α

Therefore, the expression in terms of α is:

(Keq108C4)15\left(\frac{{K_{eq}}}{{108C^4}}\right)^{\frac{1}{5}}

Hence, the correct answer is option (A):(Keq108C4)15\left(\frac{{K_{eq}}}{{108C^4}}\right)^{\frac{1}{5}}