Question
Question: PQRS is a parallelogram. The position vectors of P, Q R and S in order are, respectively, $\vec{p}=-...
PQRS is a parallelogram. The position vectors of P, Q R and S in order are, respectively, p=−3k^, q=i^+yj^, r=5i^+2xj^+k^ and s=yi^−2k^ The values of x and y are

Answer
x = 2, y = 4
Explanation
Solution
In a parallelogram, the diagonals bisect each other. Therefore, the midpoint of PR equals the midpoint of QS. This gives:
P+R=Q+S.Given:
P=−3k^,Q=i^+yj^,R=5i^+2xj^+k^,S=yi^−2k^.Calculate:
P+R=(−3k^)+(5i^+2xj^+k^)=5i^+2xj^−2k^, Q+S=(i^+yj^)+(yi^−2k^)=(1+y)i^+yj^−2k^.Equate components:
- i-component:
- j-component:
- k-component: