Solveeit Logo

Question

Question: PQRS is a parallelogram. The position vectors of P, Q R and S in order are, respectively, $\vec{p}=-...

PQRS is a parallelogram. The position vectors of P, Q R and S in order are, respectively, p=3k^\vec{p}=-3\hat{k}, q=i^+yj^\vec{q}=\hat{i}+y\hat{j}, r=5i^+2xj^+k^\vec{r}=5\hat{i}+2x\hat{j}+\hat{k} and s=yi^2k^\vec{s}=y\hat{i}-2\hat{k} The values of xx and yy are

Answer

x = 2, y = 4

Explanation

Solution

In a parallelogram, the diagonals bisect each other. Therefore, the midpoint of PRPR equals the midpoint of QSQS. This gives:

P+R=Q+S.\vec{P} + \vec{R} = \vec{Q} + \vec{S}.

Given:

P=3k^,Q=i^+yj^,R=5i^+2xj^+k^,S=yi^2k^.\vec{P} = -3\hat{k},\quad \vec{Q} = \hat{i} + y\hat{j},\quad \vec{R} = 5\hat{i} + 2x\hat{j} + \hat{k},\quad \vec{S} = y\hat{i} - 2\hat{k}.

Calculate:

P+R=(3k^)+(5i^+2xj^+k^)=5i^+2xj^2k^,\vec{P} + \vec{R} = (-3\hat{k}) + (5\hat{i} + 2x\hat{j} + \hat{k}) = 5\hat{i} + 2x\hat{j} - 2\hat{k}, Q+S=(i^+yj^)+(yi^2k^)=(1+y)i^+yj^2k^.\vec{Q} + \vec{S} = (\hat{i} + y\hat{j}) + (y\hat{i} - 2\hat{k}) = (1+y)\hat{i} + y\hat{j} - 2\hat{k}.

Equate components:

  • i-component:
5=1+yy=4.5 = 1 + y \quad \Rightarrow \quad y = 4.
  • j-component:
2x=y2x=4x=2.2x = y \quad \Rightarrow \quad 2x = 4 \quad \Rightarrow \quad x = 2.
  • k-component:
2=2(automatically satisfied).-2 = -2 \quad (\text{automatically satisfied}).