Question
Question: $p,q,r$ are reals such that the following system holds: $$(p+q)(q+r)=-1$$ $$(p-q)^2(1+(p+q)^2)=20$$...
p,q,r are reals such that the following system holds:
(p+q)(q+r)=−1 (p−q)2(1+(p+q)2)=20 (q−r)2(1+(q+r)2)=21
Find (r−p)2(1+(r+p)2).

41
Solution
Let A=p+q, B=q+r, C=r+p, X=p−q, Y=q−r, Z=r−p. The given equations are: \begin{enumerate} AB=−1 X2(1+A2)=20 Y2(1+B2)=21 \end{enumerate}
We need to find Z2(1+C2). Also, X+Y+Z=0.
We have A=p+q, B=q+r, C=r+p. Then A+B+C=2(p+q+r). So p=2A−B+C, q=2A+B−C, r=2−A+B+C. Thus X=p−q=C−B, Y=q−r=A−C, Z=r−p=B−A. So we have: \begin{enumerate} AB=−1 (C−B)2(1+A2)=20 (A−C)2(1+B2)=21 \end{enumerate} We want to find (B−A)2(1+C2).
Since AB=−1, let A=tanθ, B=tanϕ. Then tanθtanϕ=−1, so tanϕ=−cotθ=tan(θ+2π). Then ϕ=θ+2π. Also 1+A2=sec2θ, 1+B2=sec2ϕ. Then (C−B)2sec2θ=20 and (A−C)2sec2ϕ=21.
A−C=q−r and C−B=p−q and B−A=r−p. Let p+q=x1, p−q=y1. Let q+r=x2, q−r=y2. Let r+p=x3, r−p=y3. Then x1x2=−1, y12(1+x12)=20, y22(1+x22)=21. We need to find y32(1+x32). We have x1=p+q, x2=q+r, x3=r+p. Also y1=p−q, y2=q−r, y3=r−p. Then x1−x2=p−r=−y3, so y3=x2−x1. x2−x3=q−p=−y1, so y1=x3−x2. x3−x1=r−q=−y2, so y2=x1−x3.
Then x1x2=−1, (x3−x2)2(1+x12)=20, (x1−x3)2(1+x22)=21. We need to find (x2−x1)2(1+x32). Since x1x2=−1, x2=−1/x1. Then (x3+1/x1)2(1+x12)=20, (x1−x3)2(1+1/x12)=21. Then x12(x1x3+1)2(1+x12)=20 and x12(x1−x3)2(1+x12)=21. We want to find x12(1+x12)2(1+x32). Let K=x121+x12. Then (x1x3+1)2K=20 and (x1−x3)2K=21. Then (x1x3+1)2K+(x1−x3)2K=41. K[(x1x3+1)2+(x1−x3)2]=41. K[x12x32+2x1x3+1+x12−2x1x3+x32]=41. K[x12x32+1+x12+x32]=41. K[(x12+1)(x32+1)]=41. x121+x12(1+x12)(1+x32)=41. x12(1+x12)2(1+x32)=41. This is the expression we need to find. Therefore the answer is 41.