Solveeit Logo

Question

Question: PQ is double ordinate of hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] such ...

PQ is double ordinate of hyperbola x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 such that OPQ is an equilateral triangle, O being the center of hyperbola, where the eccentricity of the hyperbola ee satisfy,3e>k\sqrt 3 e > k, then the value of k is

Explanation

Solution

Here we have to find the value of eccentricity of the hyperbola. We will first write the polar coordinates of the point P and point Q. Here it is given that the OPQ is an equilateral triangle. O is the center of the hyperbola; all the angles of the triangle will be 6060^\circ . Then we will apply the distance formula and eccentricity formula for hyperbola to get the value of k.

Complete step-by-step answer:
We will draw the figure first with appropriate data given.

It is given that O is the center of the hyperbola and PQ is the double ordinate of the hyperbola. So the coordinate of point P =(asecθ,btanθ) = \left( {a\sec \theta ,b\tan \theta } \right) and coordinate of Q =(asecθ,btanθ) = \left( {a\sec \theta , - b\tan \theta } \right)
Since ΔPOQ\Delta POQ is an equilateral triangle. So the length of all sides is equal. Thus, PO=QO=PQPO = QO = PQ.
We will find the distance between these two points, (asecθ,btanθ)\left( {a\sec \theta , - b\tan \theta } \right) and (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right).
Now we will replace x1{x_1} with asecθa\sec \theta , y1{y_1} with btanθ- b\tan \theta, x2{x_2} with asecθa\sec \theta and y2{y_2} with btanθb\tan \theta in the distance formula [(x2x1)2+(y2y1)2]\sqrt {\left[ {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \right]} .
Distance of the point (asecθ,btanθ)\left( {a\sec \theta , - b\tan \theta } \right) from \left( {a\sec \theta ,b\tan \theta } \right)$$$$ = \sqrt {\left[ {{{\left( {a\sec \theta - a\sec \theta } \right)}^2} + {{\left( {b\tan \theta - ( - b\tan \theta )} \right)}^2}} \right]}
Subtracting the terms and applying exponents on the bases, we get
Distance of the point (asecθ,btanθ)\left( {a\sec \theta , - b\tan \theta } \right)from (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right) =0+4b2tan2θ= \sqrt {0 + 4{b^2}{{\tan }^2}\theta } …………..(1)\left( 1 \right)
Similarly, we will find the distance between the points (0,0)\left( {0,0} \right) and (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right).
Now we will replace x1{x_1} with 0, y1{y_1} with 0, x2{x_2} with asecθa\sec \theta and y2{y_2} with btanθb\tan \theta in the distance formula [(x2x1)2+(y2y1)2]\sqrt {\left[ {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \right]} .
Distance of the point (0,0)\left( {0,0} \right) from (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right) =[(asecθ0)2+(btanθ0)2]= \sqrt {\left[ {{{\left( {a\sec \theta - 0} \right)}^2} + {{\left( {b\tan \theta - 0} \right)}^2}} \right]}
Applying exponents on the bases, we get
Distance of point (0,0)\left( {0,0} \right) from (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right) =a2sec2θ+b2tan2θ= \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}\theta }………….(2)\left( 2 \right)
Squaring and equating equation (1)\left( 1 \right) and equation (2)\left( 2 \right), we get
(0+4b2tan2θ)2=(a2sec2θ+b2tan2θ)2{\left( {\sqrt {0 + 4{b^2}{{\tan }^2}\theta } } \right)^2} = {\left( {\sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}\theta } } \right)^2}
Simplifying the equation, we get
\Rightarrow 4a2tan2θ=a2sec2θ+a2tan2θ4{a^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {a^2}{\tan ^2}\theta
Adding and subtracting like terms, we get
\Rightarrow 3b2tan2θ=a2sec2θ3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta
On further simplification, we get
\Rightarrow b2a2=sec2θ3tan2θ\dfrac{{{b^2}}}{{{a^2}}} = \dfrac{{{{\sec }^2}\theta }}{{3{{\tan }^2}\theta }}
Breaking the terms, we get
\Rightarrow b2a2=1cos2θ3sin2θcos2θ=13sin2θ\dfrac{{{b^2}}}{{{a^2}}} = \dfrac{{\dfrac{1}{{{{\cos }^2}\theta }}}}{{\dfrac{{3{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}} = \dfrac{1}{{3{{\sin }^2}\theta }}
We know the square of eccentricity of hyperbola is equal to 1+b2a21 + \dfrac{{{b^2}}}{{{a^2}}} i.e. e2=1+b2a2{e^2} = 1 + \dfrac{{{b^2}}}{{{a^2}}}
We will put the value of b2a2\dfrac{{{b^2}}}{{{a^2}}} that we have calculated, in the above formula.
\Rightarrow e2=1+13sin2θ{e^2} = 1 + \dfrac{1}{{3{{\sin }^2}\theta }}
Simplifying the terms further, we get
\Rightarrow e2=1+4tan2θ3tan2θ{e^2} = \dfrac{{1 + 4{{\tan }^2}\theta }}{{3{{\tan }^2}\theta }}
Rewriting the equation, we get
\Rightarrow 13(e21)=sin2θ\dfrac{1}{{3\left( {{e^2} - 1} \right)}} = {\sin ^2}\theta
We know that sin2θ<1{\sin ^2}\theta < 1.
Therefore,
\Rightarrow 13(e21)<1\dfrac{1}{{3\left( {{e^2} - 1} \right)}} < 1
Using inequality property, we get
\Rightarrow 3(e21)>13\left( {{e^2} - 1} \right) > 1
Simplifying the terms, we get
\Rightarrow e21>13{e^2} - 1 > \dfrac{1}{3}
Adding 1 on both sides, we get
e21+1>13+1 e2>43\Rightarrow {e^2} - 1 + 1 > \dfrac{1}{3} + 1\\\ \Rightarrow {e^2} > \dfrac{4}{3}
Taking square root on both sides, we get
e2>43e>233e>2\Rightarrow \sqrt {{e^2}} > \sqrt {\dfrac{4}{3}} \\\\\Rightarrow e > \dfrac{2}{{\sqrt 3 }}\\\\\Rightarrow \sqrt 3 e > 2
Thus, the value of kk is 2.

Note: We have found out the required answer using the eccentricity of hyperbola. Eccentricity is a measure that tells how much a conic section differs from being circular. Conic section includes the circle, hyperbola, parabola etc. Different conic sections have different eccentricity. For example, a circle has an eccentricity 0 whereas hyperbola has an eccentricity usually greater than 1. It therefore becomes very important to keep in mind the formula of eccentricity for different conic sections.