Solveeit Logo

Question

Question: \[PQ\] is a double ordinate of hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\]...

PQPQ is a double ordinate of hyperbola x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 such that OPQOPQ is an equilateral triangle, OO being the centre of hyperbola, where eccentricity of hyperbola ee satisfy 3e>k\sqrt 3 e > k, then the value of kk is

Explanation

Solution

Here, we will draw a figure that will satisfy the given condition. Then, using the properties of double ordinate of hyperbola and an equilateral triangle, we will compare the two equations. Substituting the end product into the eccentricity of a hyperbola, we will get the required value of kk.

Complete step-by-step answer:
Let the coordinates of point PP be (h,k)\left( {h,k} \right).
We will draw a figure showing the given conditions such that OPQOPQ is an equilateral triangle, OO being the centre of hyperbola.

Since, PQPQ is a double ordinate of hyperbola, hence
l(PQ)=2kl\left( {PQ} \right) = 2k
Also, l(OP)=h2+k2l\left( {OP} \right) = \sqrt {{h^2} + {k^2}}
Now, according to the question, OPQOPQ is an equilateral triangle. Hence,
2k=h2+k22k = \sqrt {{h^2} + {k^2}}
Squaring both sides, we get
4k2=h2+k2\Rightarrow 4{k^2} = {h^2} + {k^2}
3k2=h2\Rightarrow 3{k^2} = {h^2}…………………………….(1)\left( 1 \right)
Now, point PP lies on the hyperbola, so, it would satisfy h2a2k2b2=1\dfrac{{{h^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1………………….(2)\left( 2 \right)
Substituting the value of equation (1)\left( 1 \right) in equation (2)\left( 2 \right), we get
3k2a2k2b2=1\dfrac{{3{k^2}}}{{{a^2}}} - \dfrac{{{k^2}}}{{{b^2}}} = 1
k2(3a21b2)=1\Rightarrow {k^2}\left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = 1
Dividing both sides by k2{k^2}, we get
(3a21b2)=1k2>0\Rightarrow \left( {\dfrac{3}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = \dfrac{1}{{{k^2}}} > 0
This is because k2{k^2} can neither be 1 nor be negative.
Hence, the above equation can be written as:
b2a2>13\dfrac{{{b^2}}}{{{a^2}}} > \dfrac{1}{3}
Now, we know that, e2=1+b2a2>1+13>43{e^2} = 1 + \dfrac{{{b^2}}}{{{a^2}}} > 1 + \dfrac{1}{3} > \dfrac{4}{3}, where ee is the eccentricity.
Taking square root on both sides, we get
e>23\Rightarrow e > \dfrac{2}{{\sqrt 3 }}
Now, according to the question, the eccentricity of hyperbola ee satisfies, 3e>k\sqrt 3 e > k. So,
e>k3e > \dfrac{k}{{\sqrt 3 }}
Comparing e>k3e > \dfrac{k}{{\sqrt 3 }} and e>23e > \dfrac{2}{{\sqrt 3 }}, we can say that,
k=2k = 2
Hence, this is the required answer.

Note: We can also solve this question using an alternate method:
Since, the points PQPQ lie on the hyperbola, so,
Coordinates of P=(asecθ,btanθ)P = \left( {a\sec \theta ,b\tan \theta } \right)
Coordinates of Q=(asecθ,btanθ)Q = \left( {a\sec \theta , - b\tan \theta } \right)
Now, using distance formula, we get
PQ=(x2x1)2+(y2y1)2PQ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Substituting the values of coordinates, we get
PQ=(asecθasecθ)2+(btanθbtanθ)2\Rightarrow PQ = \sqrt {{{\left( {a\sec \theta - a\sec \theta } \right)}^2} + {{\left( { - b\tan \theta - b\tan \theta } \right)}^2}}
Adding and subtracting the terms, we get
PQ=(2btanθ)2=2btanθ\Rightarrow PQ = \sqrt {{{\left( { - 2b\tan \theta } \right)}^2}} = 2b\tan \theta
Similarly,
OQ=(asecθ0)2+(btanθ0)2OQ = \sqrt {{{\left( {a\sec \theta - 0} \right)}^2} + {{\left( { - b\tan \theta - 0} \right)}^2}}
Adding the terms, we get
OQ=a2sec2θ+b2tan2θ2\Rightarrow OQ = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}}
Since, OPQOPQ is an equilateral triangle, hence,
PQ=OQPQ = OQ
2btanθ=a2sec2θ+b2tan2θ2\Rightarrow 2b\tan \theta = \sqrt {{a^2}{{\sec }^2}\theta + {b^2}{{\tan }^2}{\theta ^2}}
Squaring both sides, we get
4b2tan2θ=a2sec2θ+b2tan2θ2\Rightarrow 4{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}{\theta ^2}
3b2tan2θ=a2sec2θ\Rightarrow 3{b^2}{\tan ^2}\theta = {a^2}{\sec ^2}\theta……………………….(3)\left( 3 \right)
Now, we know that in a hyperbola, b2=a2(e21){b^2} = {a^2}\left( {{e^2} - 1} \right).
Substituting b2=a2(e21){b^2} = {a^2}\left( {{e^2} - 1} \right) in equation (3)\left( 3 \right), we get
3a2(e21)tan2θ=a2sec2θ\Rightarrow 3{a^2}\left( {{e^2} - 1} \right){\tan ^2}\theta = {a^2}{\sec ^2}\theta
Substituting tan2θ=sin2θcos2θ{\tan ^2}\theta = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} and sec2θ=1cos2θ{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}, we get
3(e21)sin2θcos2θ=1cos2θ\Rightarrow 3\left( {{e^2} - 1} \right)\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{1}{{{{\cos }^2}\theta }}
3(e21)sin2θ=1\Rightarrow 3\left( {{e^2} - 1} \right){\sin ^2}\theta = 1
On cross multiplication, we get
sin2θ=13(e21)\Rightarrow {\sin ^2}\theta = \dfrac{1}{{3\left( {{e^2} - 1} \right)}}
The value of sin2θ{\sin ^2}\theta is always less than 1, so
13(e21)<1\Rightarrow \dfrac{1}{{3\left( {{e^2} - 1} \right)}} < 1
Again on cross multiplication, we get
1(e21)<3\Rightarrow \dfrac{1}{{\left( {{e^2} - 1} \right)}} < 3
Taking reciprocal on both sides, and changing the inequality, we get
(e21)>13\Rightarrow \left( {{e^2} - 1} \right) > \dfrac{1}{3}
Adding 1 on both sides, we get
e2>13+1>43\Rightarrow {e^2} > \dfrac{1}{3} + 1 > \dfrac{4}{3}
Taking square root on both sides, we get
e>23\Rightarrow e > \dfrac{2}{{\sqrt 3 }}
Now, according to the question, the eccentricity of hyperbola ee satisfies 3e>k\sqrt 3 e > k or e>k3e > \dfrac{k}{{\sqrt 3 }}.
Comparing e>k3e > \dfrac{k}{{\sqrt 3 }} and e>23e > \dfrac{2}{{\sqrt 3 }}, we can say that,
k=2k = 2
Hence, this is the required answer.