Solveeit Logo

Question

Question: \[PQ\] is a double ordinate of a parabola. Find the locus of its point of trisection....

PQPQ is a double ordinate of a parabola. Find the locus of its point of trisection.

Explanation

Solution

Hint: Use the section formula
x=mx2+nx1m+n;y=my2+ny1m+nx=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}
In between extremities of double ordinate.
Given that PQPQ is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
y2=4ax\Rightarrow {{y}^{2}}=4ax

We know that PQPQ is double ordinate of given parabola.
Therefore, PQOAPQ\bot OA
We know that any general point on parabola y2=4ax{{y}^{2}}=4axis (x,y)=(at2,2at)\left( x,y \right)=\left( a{{t}^{2}},2at \right).
Therefore, P=(at2,2at)P=\left( a{{t}^{2}},2at \right)
As PP and QQ are symmetrical along x-axis.
Therefore, Q=(at2,2at)Q=\left( a{{t}^{2}},-2at \right)
Let RR and SS be the point of trisection of double ordinate.
Therefore, PR=RS=SQ.....(i)PR=RS=SQ.....\left( i \right)
Let RR divide the PQPQin the ratio mn=PRRQ\dfrac{m}{n}=\dfrac{PR}{RQ}.
SubstituteRQ=RS+SQRQ=RS+SQ.
mn=PRRQ=PSRS+SQ\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}
Putting RS=SQ=PR[from equation (i)]RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]
mn=PRRQ=PRPR+PR=PR2PR\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}
Therefore, we get mn=12\dfrac{m}{n}=\dfrac{1}{2}
Therefore, RR divides PQPQ in ratiomn=12\dfrac{m}{n}=\dfrac{1}{2}.
By section formula,
x=mx2+nx1m+n....(ii)x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)
y=my2+ny1m+n....(iii)y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)
Here, P(x1,y1)=P(at2,2at)P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)
Q(x2,y2)=Q(at2,2at)Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)
R(x,y)=R(h,k)R\left( x,y \right)=R\left( h,k \right)
Putting values in equation(ii)\left( ii \right)and equation(iii)\left( iii \right).
Therefore, h=1(at2)+2(at2)3h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}, k=1(2at)+2(2at)3k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}
We get, h=3at23=at2....(iv)h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right), k=2at3....(v)k=\dfrac{2at}{3}....\left( v \right)
From equation(v)\left( v \right), we get t=3k2at=\dfrac{3k}{2a}
Putting value of tt in equation (iv)\left( iv \right).
h=at2\Rightarrow h=a{{t}^{2}}
h=a(3k2a)2h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}
Therefore we get 9k2=4ah9{{k}^{2}}=4ah
Therefore, locus of point of intersection is 9y2=4ax9{{y}^{2}}=4ax.

Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.