Solveeit Logo

Question

Question: PQ and QR are two focal chords of an ellipse and the eccentric angles of P,Q,R and 2a, 2b, 2g respe...

PQ and QR are two focal chords of an ellipse and the

eccentric angles of P,Q,R and 2a, 2b, 2g respectively then tan

b tan g is equal to –

A

cota

B

cot2a

C

2 cot a

D

None of these

Answer

cot2a

Explanation

Solution

x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1

P (a cos 2a, b sin 2a), Q (a cos 2b , b sin 2 b)

R (a cos 2g, b sin 2g)

chord's PQ equation

xa\frac{x}{a}cos (a + b) + yb\frac{y}{b}sin (a + b) = cos (a – b)

PQ passes through the focus (ae, 0)

e = cos(αβ)cos(α+β)\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}

PR passes through the focus (– ae, 0) the

– e = cos(αγ)cos(α+γ)\frac{\cos(\alpha - \gamma)}{\cos(\alpha + \gamma)}

cos(αβ)cos(α+β)\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)} = – cos(αγ)cos(α+γ)\frac{\cos(\alpha - \gamma)}{\cos(\alpha + \gamma)}

Apply componendo and dividendo, we get

cos(α+β)+cos(αβ)cos(α+β)cos(αβ)\frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{\cos(\alpha + \beta) - \cos(\alpha - \beta)} = cos(α+γ)cos(αγ)cos(α+γ)+cos(αγ)\frac{\cos(\alpha + \gamma) - \cos(\alpha - \gamma)}{\cos(\alpha + \gamma) + \cos(\alpha - \gamma)}

2cosαcosβ2sinαsinβ\frac{2\cos\alpha\cos\beta}{2\sin\alpha\sin\beta} = 2sinαsinγ2cosαcosγ\frac{2\sin\alpha\sin\gamma}{2\cos\alpha\cos\gamma}

tan b tan g = cot2 a