Question
Question: PQ and QR are two focal chords of an ellipse and the eccentric angles of P,Q,R and 2a, 2b, 2g respe...
PQ and QR are two focal chords of an ellipse and the
eccentric angles of P,Q,R and 2a, 2b, 2g respectively then tan
b tan g is equal to –
A
cota
B
cot2a
C
2 cot a
D
None of these
Answer
cot2a
Explanation
Solution
a2x2+b2y2=1
P (a cos 2a, b sin 2a), Q (a cos 2b , b sin 2 b)
R (a cos 2g, b sin 2g)
chord's PQ equation
axcos (a + b) + bysin (a + b) = cos (a – b)
PQ passes through the focus (ae, 0)
e = cos(α+β)cos(α−β)
PR passes through the focus (– ae, 0) the
– e = cos(α+γ)cos(α−γ)
cos(α+β)cos(α−β) = – cos(α+γ)cos(α−γ)
Apply componendo and dividendo, we get
cos(α+β)−cos(α−β)cos(α+β)+cos(α−β) = cos(α+γ)+cos(α−γ)cos(α+γ)−cos(α−γ)
2sinαsinβ2cosαcosβ = 2cosαcosγ2sinαsinγ
tan b tan g = cot2 a