Solveeit Logo

Question

Question: Positronium is like a H atom with the proton replaced by positron (a positively charged antiparticle...

Positronium is like a H atom with the proton replaced by positron (a positively charged antiparticle of the electron which is as massive as electron). The ground state energy of positronium would be

A

3.4 eV- 3.4\text{ eV}

B

5.2 eV- 5.2\text{ eV}

C

6.8 eV- 6.8\text{ eV}

D

10.2 eV- 10.2\text{ eV}

Answer

6.8 eV- 6.8\text{ eV}

Explanation

Solution

Bohr’s formula for ground state energy

E=me48ε02h2E = - \frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}} (n=1).........(1)(\because n = 1).........(1)

Here, m is reduced mass of electron and positron in positronium

m=mempme+mp=me2\therefore m = \frac{m_{e}m_{p}}{m_{e} + m_{p}} = \frac{m_{e}}{2} (me=mp)(\because m_{e} = m_{p})

\therefore Ground state energy of positronium

E=(me2)e48ε02h2=12(mee48ε02h2)E = - \frac{\left( \frac{m_{e}}{2} \right)e^{4}}{8\varepsilon_{0}^{2}h^{2}} = - \frac{1}{2}\left( \frac{m_{e}e^{4}}{8\varepsilon_{0}^{2}h^{2}} \right) (using(i)

=12×13.6eV= - \frac{1}{2} \times 13.6eV [mee48ε02h2=13.6eV]\left\lbrack \frac{m_{e}e^{4}}{8\varepsilon_{0}^{2}h^{2}} = 13.6eV \right\rbrack

=6.8eV.= - 6.8eV.