Solveeit Logo

Question

Question: Position of a particle is given by $y = \frac{t^2+t^3}{8}$. If % error in calculating time is 0.1% a...

Position of a particle is given by y=t2+t38y = \frac{t^2+t^3}{8}. If % error in calculating time is 0.1% at t = 2 s, find % error in calculating position of the particle at t = 2 s.

A

0.267%

B

0.4%

C

0.8%

D

None of the above

Answer

0.267%

Explanation

Solution

The position of the particle is given by the function: y=t2+t38y = \frac{t^2+t^3}{8}

We are given that the percentage error in calculating time at t=2t = 2 s is 0.1%. This can be written as: Δtt×100%=0.1%\frac{\Delta t}{t} \times 100\% = 0.1\%

To find the error in position Δy\Delta y, we use the concept of error propagation. For a function y=f(t)y = f(t), the change in yy for a small change in tt is given by ΔydydtΔt\Delta y \approx \frac{dy}{dt} \Delta t.

We can also use relative errors: ΔyydydtΔty\frac{\Delta y}{y} \approx \frac{dy}{dt} \frac{\Delta t}{y} Rearranging this, we get: Δyy×100%(dydtty)(Δtt×100%)\frac{\Delta y}{y} \times 100\% \approx \left(\frac{dy}{dt} \frac{t}{y}\right) \left(\frac{\Delta t}{t} \times 100\%\right)

First, let's find the value of yy at t=2t = 2 s: y(2)=(2)2+(2)38=4+88=128=1.5y(2) = \frac{(2)^2 + (2)^3}{8} = \frac{4 + 8}{8} = \frac{12}{8} = 1.5

Next, we find the derivative of yy with respect to tt: dydt=ddt(t2+t38)=18(2t+3t2)\frac{dy}{dt} = \frac{d}{dt}\left(\frac{t^2+t^3}{8}\right) = \frac{1}{8}(2t + 3t^2)

Now, we evaluate the derivative at t=2t = 2 s: dydtt=2=18(2(2)+3(2)2)=18(4+3(4))=18(4+12)=168=2\frac{dy}{dt}\Big|_{t=2} = \frac{1}{8}(2(2) + 3(2)^2) = \frac{1}{8}(4 + 3(4)) = \frac{1}{8}(4 + 12) = \frac{16}{8} = 2

Now, substitute the values at t=2t=2 s into the relative error formula: Δyy×100%(dydtty)(Δtt×100%)\frac{\Delta y}{y} \times 100\% \approx \left(\frac{dy}{dt} \frac{t}{y}\right) \left(\frac{\Delta t}{t} \times 100\%\right) Δyy×100%(2×21.5)×0.1%\frac{\Delta y}{y} \times 100\% \approx \left(\frac{2 \times 2}{1.5}\right) \times 0.1\% Δyy×100%(41.5)×0.1%\frac{\Delta y}{y} \times 100\% \approx \left(\frac{4}{1.5}\right) \times 0.1\% Δyy×100%(4015)×0.1%=83×0.1%=0.83%0.2666...%\frac{\Delta y}{y} \times 100\% \approx \left(\frac{40}{15}\right) \times 0.1\% = \frac{8}{3} \times 0.1\% = \frac{0.8}{3}\% \approx 0.2666... \%

Rounding to three decimal places, the percentage error in position is approximately 0.267%0.267\%.