Solveeit Logo

Question

Physics Question on Motion in a straight line

Points PP , QQ and RR are in a vertical line such that PQ=QRPQ = QR . A ball at PP is allowed to fall freely. The ratio of times of descent through PQPQ and QRQR is

A

1:11 : 1

B

1:21 : \sqrt{2}

C

1:(21)1 : \left(\sqrt{2} - 1\right)

D

1:(2+1)1 : \left(\sqrt{2} + 1\right)

Answer

1:(21)1 : \left(\sqrt{2} - 1\right)

Explanation

Solution

PQ=QR=hPQ = QR = h h=12gt12h=\frac{1}{2}gt^{2}_{1} and 2h=12g(t1+t2)2(u=0)2h=\frac{1}{2}g\left(t_{1}+t_{2}\right)^{2}\quad\left(\because u=0\right) 12=t12(t1+t2)2\frac{1}{2} =\frac{t^{2}_{1}}{\left(t_{1}+t_2\right)^{2}} or 12=t1(t1+t2)\frac{1}{\sqrt{2}}=\frac{t_{1}}{\left(t_{1}+t_{2}\right)} t1+t2=2t1t_{1}+t_{2}=\sqrt{2}t_{1} or t1(21)=t2t_{1}\left(\sqrt{2}-1\right)=t_{2} t1t2=1(21)\therefore \frac{t_{1}}{t_{2}}=\frac{1}{\left(\sqrt{2}-1\right)} .