Solveeit Logo

Question

Question: Points \( A\left( {4,1} \right) \) lies on a line : \( \left( A \right){\text{ }}x + 2y = 5 \) ...

Points A(4,1)A\left( {4,1} \right) lies on a line :
(A) x+2y=5\left( A \right){\text{ }}x + 2y = 5
(B) x+2y=6\left( B \right){\text{ }}x + 2y = 6
(C) x+2y=16\left( C \right){\text{ }}x + 2y = 16
(D) x+2y=6\left( D \right){\text{ }}x + 2y = - 6

Explanation

Solution

Hint : If a point (x,y)\left( {x,y} \right) lies on a line, then the equation of the line must be satisfied by the given point (x,y),\left( {x,y} \right), means by substituting the values of x and yx{\text{ and }}y , the equation should hold true. Hence to solve this question we will put the given values of x and yx{\text{ and }}y in all the given equations and the equation which will satisfy these values will be our answer. The equation of a line in slope intercept form is written as, y=mx+cy = mx + c ; where mm is the slope or gradient of the line and cc is called the intercept on the yaxisy - axis . The slope or gradient of a line is calculated by the formula , m=y2y1x2x1m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} where (x1,y1) and (x2,y2)\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right) are called the starting and end points of the line respectively.

Complete step-by-step answer :
The given point is : (x,y)=(4,1)\left( {x,y} \right) = \left( {4,1} \right)
The quadrant system is shown in the figure below:

According to the quadrant system shown above, the given point A(4,1)A\left( {4,1} \right) lies in the first quadrant as both the values are positive.
Now, we will have to check for all the equations given in the question one by one:
(A) x+2y=5\left( A \right){\text{ }}x + 2y = 5
x=4 and y=1\Rightarrow x = 4{\text{ and }}y = 1 (Given)
Put the values of x and yx{\text{ and }}y in the given equation, we get;
L.H.S. 4+(2×1)=6{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \Rightarrow {\text{ 4}} + \left( {2 \times 1} \right) = 6
R.H.S. = 5{\text{R}}{\text{.H}}{\text{.S}}{\text{. = 5}}
65\Rightarrow 6 \ne 5
Hence, L.H.S.R.H.S.{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}
Therefore, option A can not be the correct answer.

(B) x+2y=6\left( B \right){\text{ }}x + 2y = 6
x=4 and y=1\Rightarrow x = 4{\text{ and }}y = 1 (Given)
Put the values of x and yx{\text{ and }}y in the given equation, we get;
L.H.S. 4+(2×1)=6{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \Rightarrow {\text{ 4}} + \left( {2 \times 1} \right) = 6
R.H.S. = 6
6=6\Rightarrow 6 = 6
Hence, L.H.S. = R.H.S.{\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}}
Therefore, option B is the correct answer for this question.

(C) x+2y=16\left( C \right){\text{ }}x + 2y = 16
x=4 and y=1\Rightarrow x = 4{\text{ and }}y = 1 (Given)
Put the values of x and yx{\text{ and }}y in the given equation, we get;
L.H.S. 4+(2×1)=6{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \Rightarrow {\text{ 4}} + \left( {2 \times 1} \right) = 6
R.H.S. = 16{\text{R}}{\text{.H}}{\text{.S}}{\text{. = 16}}
616\Rightarrow 6 \ne 16
Hence, L.H.S. R.H.S.{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \ne {\text{ R}}{\text{.H}}{\text{.S}}{\text{.}}
Therefore, option C can not be the correct answer.

(D) x+2y=6\left( D \right){\text{ }}x + 2y = - 6
x=4 and y=1\Rightarrow x = 4{\text{ and }}y = 1 (Given)
Put the values of x and yx{\text{ and }}y in the given equation, we get;
L.H.S. 4+(2×1)=6{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \Rightarrow {\text{ 4}} + \left( {2 \times 1} \right) = 6
R.H.S. = 6{\text{R}}{\text{.H}}{\text{.S}}{\text{. = }} - 6
66\Rightarrow 6 \ne - 6
Hence, L.H.S.R.H.S.{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}
Hence point A(4,1)A\left( {4,1} \right) lies on a line whose equation is given by: x+2y=6x + 2y = 6
So, the correct answer is “Option B”.

Note : We have seen the slope intercept form of a straight line with a gradient and intercept on the yaxisy - axis above. But in this question, we are given the equation of a straight line in a different form. For example: x+2y=6x + 2y = - 6 , then how can we represent this equation in the standard form. By rearranging the equation as 2y=x62y = - x - 6 or y=12x3y = - \dfrac{1}{2}x - 3 . Now comparing this with the standard equation i.e. y=mx+cy = mx + c , we can say that m=12m = - \dfrac{1}{2} and yintercept or c=3y - {\text{intercept or }}c = - 3