Solveeit Logo

Question

Question: Point P(x, y) satisfying the equation \({{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2\)...

Point P(x, y) satisfying the equation sin1x+cos1y+cos1(2xy)=π/2{{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2 lies on

  1. The bisector of the first and third quadrant.
  2. The bisector of the second and fourth quadrant.
    3)The rectangle formed by the lines x=±\pm 1 and y=±\pm 1
    4)A unit circle with centre at the origin
Explanation

Solution

Convert the cos1y{{\cos }^{-1}}y into the sine form and then use the formula sin1+cos1x=π/2{{\sin }^{-1}}+{{\cos }^{-1}}x=\pi /2
Simplify all the options given in the question
(1)The bisector of the first and third quadrant.
The line is bisecting and passing through first and third quadrant
\Rightarrow x=y

(2)The bisector of the second and fourth quadrant.
The line is bisecting and passing through second and fourth quadrant
\Rightarrow x=-y

      ![](https://www.vedantu.com/question-sets/b1d7c41e-862f-4dd6-bc1e-17eea5b2c9894979509385373628855.png)  

(3)The rectangle formed by the lines x=±\pm 1 and y=±\pm 1

(4) A unit circle with centre at the origin

The equation for this circle is x2+y2=1{{x}^{2}}+{{y}^{2}}=1

Formula Used:
cosθ=Base/Hypotenuse sinθ=Perpendicular/Hypotenuse sin1x+sin1y=sin1[xy+1y1x2] \begin{aligned} & \cos \theta =Base/Hypotenuse \\\ & \sin \theta =Perpendicular/Hypotenuse \\\ & {{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}] \\\ \end{aligned}
sin1x+cos1x=π/2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2

Complete step-by-step answer:
sin1x+cos1y+cos1(2xy)=π/2{{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2 (1)
Convert the cos1y{{\cos }^{-1}}y into the sine form

That is,
Let cos1y{{\cos }^{-1}}y = θ\theta in triangle ABC
{ ACB=θ\angle ACB=\theta }
\Rightarrow cos θ\theta =y = Base/Hypotenuse
\Rightarrow Base=y
\Rightarrow Hypotenuse=1
Applying the Pythagoras theorem
Hypotenuse2^{2} =Base2^{2} + Perpendicular2^{2}
\Rightarrow 12^{2} = y2^{2} + Perpendicular2^{2}
\Rightarrow Perpendicular2^{2} =12^{2} - y2^{2}
Taking square root on both sides
We get,
Perpendicular = 1y2\sqrt{1-{{y}^{2}}}
\Rightarrow sinθ\theta = Perpendicular/Hypotenuse
= 1y2\sqrt{1-{{y}^{2}}}
Now,
Put the value of cos1y{{\cos }^{-1}}y in terms of sine in equation (1)
sin1x+sin11y2+cos12xy=π/2  \begin{aligned} & {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}+{{\cos }^{-1}}2xy=\pi /2 \\\ & \\\ \end{aligned} (2)
Use the formula sin1x+sin1y=sin1[xy+1y1x2]{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}]
Here y= 1y2\sqrt{1-{{y}^{2}}}
\Rightarrow sin1x+sin11y2=sin1[x1y2+y1x2]{{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}={{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]
Put in equation (2)
sin1[x1y2+y1x2]+cos12xy=π/2{{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]+{{\cos }^{-1}}2xy=\pi /2
Now,
We know that sin1x+cos1x=π/2{{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2
\Rightarrow x1y2+y1x2=2xyx\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}=2xy

& \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=2xy-xy \\\ & \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=xy \\\ \end{aligned}$$ Squaring on both sides We get $$\begin{aligned} & (1-{{y}^{2}})(1-{{x}^{2}})={{x}^{2}}{{y}^{2}} \\\ & \Rightarrow 1-{{y}^{2}}-{{x}^{2}}+{{x}^{2}}{{y}^{2}}={{x}^{2}}{{y}^{2}} \\\ & \Rightarrow 1-{{y}^{2}}-{{x}^{2}}={{x}^{2}}{{y}^{2}}-{{x}^{2}}{{y}^{2}} \\\ & \Rightarrow 1-{{y}^{2}}-{{x}^{2}}=0 \\\ & \Rightarrow {{y}^{2}}+{{x}^{2}}=1 \\\ \end{aligned}$$ Hence the right option is (4) that is A unit circle with centre at the origin. **Additional information:** The inverse trigonometric functions are also known as the anti trigonometric functions or sometimes called arcus functions or cyclometric functions. The formula list is given below for reference to solve the problems. $$\begin{aligned} & si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in \left[ -1,\text{ }1 \right] \\\ & ta{{n}^{-1}}x\text{ }+\text{ }co{{t}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in R \\\ & se{{c}^{-1}}x\text{ }+\text{ }cose{{c}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\left| x \right|\text{ }\ge \text{ }1 \\\ \end{aligned}$$ **Note:** The knowledge about the trigonometric functions as well as inverse trigonometric functions and their relations is important for students to answer such questions.