Solveeit Logo

Question

Question: Point on the line y = 2x + 11 that is nearest to the circle 16x<sup>2</sup> + 16y<sup>2</sup> + 32x...

Point on the line y = 2x + 11 that is nearest to the circle

16x2 + 16y2 + 32x - 8y − 50 = 0, is

A

(72,4)\left( - \frac { 7 } { 2 } , 4 \right)

B

(92,2)\left( - \frac { 9 } { 2 } , 2 \right)

C

(-3, 5)

D

) (12,12)\left( \frac { 1 } { 2 } , 12 \right)

Answer

(92,2)\left( - \frac { 9 } { 2 } , 2 \right)

Explanation

Solution

Clearly 'A' is the required point. Equation of line ABB1 is

(y14)=12(x+1)\left( y - \frac { 1 } { 4 } \right) = - \frac { 1 } { 2 } ( x + 1 ) or 4y + 2x + 1 = 0

Solving it with y = 2x + 11 we get A ≡ (92,2)\left( \frac { 9 } { 2 } , 2 \right)