Solveeit Logo

Question

Question: \((p\mspace{6mu} \land \sim q) \land (\sim p \land q)\) is...

(p6muq)(pq)(p\mspace{6mu} \land \sim q) \land (\sim p \land q) is

A

A tautology

B

A contradiction

C

Both a tautology and a contradiction

D

Neither a tautology nor a contradiction

Answer

A contradiction

Explanation

Solution

(p6muq)(pq)=(p6mup)(qq)=ff=f(p\mspace{6mu} \land \sim q) \land (\sim p \land q) = (p\mspace{6mu} \land \sim p) \land (\sim q \land q) = f \land f = f.

(By using associative laws and commutatine laws)

(pq)(pq)(p \land \sim q) \land (\sim p \land q) is a contradiction.

((p6muq)(pq)=(p6mup)(qq)=ff=f(p\mspace{6mu} \land \sim q) \land (\sim p \land q) = (p\mspace{6mu} \land \sim p) \land (\sim q \land q) = f \land f = f.