Solveeit Logo

Question

Question: Plot the graph of \({{\sin }^{-1}}\left( \sin x \right)\) and write its domain and range....

Plot the graph of sin1(sinx){{\sin }^{-1}}\left( \sin x \right) and write its domain and range.

Explanation

Solution

To draw the graph of sin1(sinx){{\sin }^{-1}}\left( \sin x \right), we must know about the following concepts,
Inverse of a function means a function which returns back the original value applied on the given function. Inverse of a particular function exists if the function is bijective.i.e., for each unique value from the domain of the function, we should have a corresponding unique value from the range of the function.

Complete step-by-step solution:
For a function ff , if its inverse exists, then
f1(f(x))=x where xRange of f1(x){{f}^{-1}}\left( f\left( x \right) \right)=x\text{ where }x\in Range\text{ of }{{f}^{-1}}\left( x \right)
Another point to be noted is
If, siny=sinx y=nπ+(1)nx \begin{aligned} & \text{If, }\sin y=\sin x \\\ & \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\\ \end{aligned}
Range of y=sin1xy={{\sin }^{-1}}x x(1,1),y(π2,π2)\forall x\in \left( -1,1 \right),y\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)
Now, let us proceed with the question,
We have, f(x)=sin1(sinx)f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)
Let us assume f(x)=θf\left( x \right)=\theta
sin1(sinx)=θ sinx=sinθ \begin{aligned} & \Rightarrow {{\sin }^{-1}}\left( \sin x \right)=\theta \\\ & \Rightarrow \sin x=\sin \theta \\\ \end{aligned}
Using,
If, siny=sinx y=nπ+(1)nx \begin{aligned} & \text{If, }\sin y=\sin x \\\ & \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\\ \end{aligned}
We get
θ=nπ+(1)nx\Rightarrow \theta =n\pi +{{\left( -1 \right)}^{n}}x
For different values of xx , we will get different values of θ\theta .i.e., for different values of xx, we will get different values of f(x)f\left( x \right) .
For n=1n=-1
θ=sin1(sin(πx))\theta ={{\sin }^{-1}}\left( \sin \left( -\pi -x \right) \right)
For θ\theta to exist,
π2πxπ2 π2x3π2 π2x3π2 \begin{aligned} & \dfrac{-\pi }{2}\le -\pi -x\le \dfrac{\pi }{2} \\\ & \Rightarrow \dfrac{\pi }{2}\le -x\le \dfrac{3\pi }{2} \\\ & \Rightarrow \dfrac{-\pi }{2}\ge x\ge \dfrac{-3\pi }{2} \\\ \end{aligned}
For n=0,n=0,
θ=sin1(sinx)\theta ={{\sin }^{-1}}\left( \sin x \right)
For θ\theta to exist,
π2xπ2\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}
For n=1,n=1,
θ=sin1(sin(πx))\theta ={{\sin }^{-1}}\left( \sin \left( \pi -x \right) \right)
For θ\theta to exist,
π2πxπ2 3π2xπ2 3π2xπ2 \begin{aligned} & \dfrac{-\pi }{2}\le \pi -x\le \dfrac{\pi }{2} \\\ & \Rightarrow \dfrac{-3\pi }{2}\le -x\le \dfrac{-\pi }{2} \\\ & \Rightarrow \dfrac{3\pi }{2}\ge x\ge \dfrac{\pi }{2} \\\ \end{aligned}
So, we can redefine the function f(x)f\left( x \right) as
f\left( x \right)=\left\\{ \begin{matrix} & -\pi -x &\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} \\\ & x & \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \\\ & \pi -x & \dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\\ \end{matrix} \right.
Now, using these inequalities we will draw the graph of f(x)=sin1(sinx)f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)

So, for the function f(x)=sin1(sinx)f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)
Domain:xRDomain:x\in R
Range:x(π2,π2)Range:x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)
The graph is periodic with a fundamental period of 2π2\pi .

Note: While drawing the graph of f(x)=sin1(sinx)f\left( x \right)={{\sin }^{-1}}\left( \sin x \right), remember that the different values of xx should correspond to the range of sin1x{{\sin }^{-1}}x .i.e.,x(π2,π2)x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right). Here, since xx is the domain of sinx\sin x, hence xRx\in R. This means that sinx(1,1)\sin x\in \left( -1,1 \right) and hence sin1(sinx)(π2,π2){{\sin }^{-1}}\left( \sin x \right)\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right). So, the given function has a range of (π2,π2)\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) for every xRx\in R.