Solveeit Logo

Question

Physics Question on Simple Harmonic Motion and Uniform Circular Motion

Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (t = 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case: ( x is in cm and t is in s).

  1. x = –2 sin (3t + π3\frac{\pi}{3})
  2. x = cos (π6\frac{\pi}{6} – t)
  3. x = 3 sin (2πt + π4\frac{\pi}{4})
  4. x = 2 cos πt
Answer

a. xx =2sin(3t+π3)+2cos(3t+π3+π2)-2\sin\bigg(3t+\frac{\pi}{3}\bigg)+2\cos\bigg(3t+\frac{\pi}{3}+\frac{\pi}{2}\bigg)
= 2cos(3t+5π6)2\cos\bigg(3t+\frac{5\pi}{6}\bigg)
If this equation is compared with the standard SHM equation xx =Acos(2πTt+ϕ)A\cos\bigg(\frac{2π}{T} t+\phi\bigg) , then we get:
Amplitude, AA = 2  cm2 \;cm
Phase angle, ϕ\phi = 5π6\frac{5\pi}{6}=150º150º
Angular velocity, ω\omega = 2πT\frac{2\pi}{T}=3rad/sec.3 \,rad/sec.
The motion of the particle can be plotted as shown in the following figure.
The motion of the particle
xx =cos(π6t)\cos\bigg(\frac{\pi}{6}-t\bigg)=cos(tπ6)\cos \bigg(t-\frac{π}{6}\bigg)
If this equation is compared with the standard SHM equation xx =Acos(2πTt+ϕ)A\cos\bigg(\frac{2\pi}{T} t+\phi\bigg), then we get :
Amplitude, AA =11
Phase angle, ϕ\phi = π6-\frac{π}{6}=30º-30º
Angular velocity, ω\omega = 2πT\frac{2\pi}{T}=1  rad/s1 \;rad/s
The motion of the particle can be plotted as shown in the following figure.
The motion of the particle
xx = 3sin(2πt+π4)3\sin\bigg(2\pi t+\frac{\pi}{4}\bigg)
=3cos[(2πt+π4)+π2]-3\cos\bigg[\bigg(2\pi t+\frac{\pi}{4}\bigg)+\frac{\pi}{2}\bigg]=-3cos(2πt+3π4)3\cos\bigg(2\pi t+\frac{3\pi}{4}\bigg)
If this equation is compared with the standard SHM equation xx = Acos(2πTt+ϕ)A\cos\bigg(\frac{2\pi}{T} t+\phi\bigg) , then we get:
Amplitude, AA = 3cm3 \,cm
Phase angle, ϕ\phi = 3π4\frac{3\pi}4=135º135º
Angular velocity, ω\omega =2πT\frac{2\pi}{T} = 2π  rad/s2\pi \;rad/s
The motion of the particle can be plotted as shown in the following figure.
The motion of the particle
xx = 2cosπt2 \cos \pi t
If this equation is compared with the standard SHM equation we get: Acos(2πTt+ϕ)A\cos\bigg(\frac{2\pi}{T} t+\phi\bigg) then we get:
Amplitude, AA = 2  cm2 \;cm
Phase angle, ϕ\phi = 00
Angular velocity, ω\omega = π  rad/s\pi \; rad/s
The motion of the particle can be plotted as shown in the following figure.