Question
Question: A recording disc rotates steadily at 45 rev/minute on a table. When a small mass of 0.02 kg is dropp...
A recording disc rotates steadily at 45 rev/minute on a table. When a small mass of 0.02 kg is dropped gently on the disc at a distance of 0.04 m from its axis and stuck to the disc, the rate of revolution falls to 36 min. The moment of inertia of the disc about its centre is:-
एक रिकार्डिंग चकती 45 चक्कर/मिनट की एकसमान दर से एक मेज पर घूम रही है। जब एक छोटा पिण्ड जो 0.02 किग्रा का है चकती पर गिराया जाता है उसकी अक्ष से 0.04 m की दूरी पर तथा यह पिण्ड चकती से चिपक जाता है तो घूमने की दर 36 चक्कर/मिनट हो जाती है। चकती का अपनी अक्ष के पारित जड़त्व आघूर्ण होगाः-

1.3x10-4 kgxm2
1.3x10-5 kgxm2
1.3x10-3 kgxm2
1.3x10-2kgxm2
1.3x10-4 kgxm2
Solution
The problem involves a rotating disc and a mass dropped onto it, leading to a change in the rate of revolution. Since there are no external torques acting on the system (disc + mass), the total angular momentum of the system is conserved.
1. Identify Given Values:
- Initial angular speed of the disc, ω1=45 rev/minute
- Final angular speed of the disc + mass, ω2=36 rev/minute
- Mass dropped, m=0.02 kg
- Distance of the mass from the axis, r=0.04 m
- Let I be the moment of inertia of the disc about its center (what we need to find).
2. Calculate Moments of Inertia:
- Initial Moment of Inertia (I1): Before the mass is dropped, only the disc is rotating. So, I1=I.
- Final Moment of Inertia (I2): After the mass is dropped and sticks to the disc, the system consists of the disc and the point mass. The moment of inertia of a point mass m at a distance r from the axis is mr2. So, I2=I+mr2.
3. Apply Conservation of Angular Momentum: According to the principle of conservation of angular momentum, the initial angular momentum (L1) equals the final angular momentum (L2): L1=L2 I1ω1=I2ω2 Substitute the expressions for I1 and I2: Iω1=(I+mr2)ω2
4. Solve for I: Expand the equation: Iω1=Iω2+mr2ω2 Rearrange to group terms with I: Iω1−Iω2=mr2ω2 I(ω1−ω2)=mr2ω2 I=ω1−ω2mr2ω2
5. Substitute the Numerical Values: It's not necessary to convert angular speeds from rev/minute to rad/s, as the units will cancel out in the ratio ω1−ω2ω2.
-
Calculate mr2: mr2=(0.02 kg)×(0.04 m)2 mr2=0.02×0.0016 mr2=0.000032 kg m2=3.2×10−5 kg m2
-
Substitute all values into the equation for I: I=45−36(3.2×10−5)×36 I=9(3.2×10−5)×36 I=(3.2×10−5)×4 I=12.8×10−5 kg m2 I=1.28×10−4 kg m2
6. Compare with Options: The calculated value 1.28×10−4 kg m2 is approximately 1.3×10−4 kg m2.
The final answer is 1.3x10-4 kgxm2.
Explanation of the solution: The problem is solved using the principle of conservation of angular momentum. The initial angular momentum of the disc (Iω1) is equated to the final angular momentum of the disc-plus-mass system ((I+mr2)ω2). By substituting the given values for mass, radius, and angular speeds, the moment of inertia of the disc (I) is calculated.