Solveeit Logo

Question

Question: A recording disc rotates steadily at 45 rev/minute on a table. When a small mass of 0.02 kg is dropp...

A recording disc rotates steadily at 45 rev/minute on a table. When a small mass of 0.02 kg is dropped gently on the disc at a distance of 0.04 m from its axis and stuck to the disc, the rate of revolution falls to 36 min. The moment of inertia of the disc about its centre is:-

एक रिकार्डिंग चकती 45 चक्कर/मिनट की एकसमान दर से एक मेज पर घूम रही है। जब एक छोटा पिण्ड जो 0.02 किग्रा का है चकती पर गिराया जाता है उसकी अक्ष से 0.04 m की दूरी पर तथा यह पिण्ड चकती से चिपक जाता है तो घूमने की दर 36 चक्कर/मिनट हो जाती है। चकती का अपनी अक्ष के पारित जड़त्व आघूर्ण होगाः-

A

1.3x10-4 kgxm2

B

1.3x10-5 kgxm2

C

1.3x10-3 kgxm2

D

1.3x10-2kgxm2

Answer

1.3x10-4 kgxm2

Explanation

Solution

The problem involves a rotating disc and a mass dropped onto it, leading to a change in the rate of revolution. Since there are no external torques acting on the system (disc + mass), the total angular momentum of the system is conserved.

1. Identify Given Values:

  • Initial angular speed of the disc, ω1=45 rev/minute\omega_1 = 45 \text{ rev/minute}
  • Final angular speed of the disc + mass, ω2=36 rev/minute\omega_2 = 36 \text{ rev/minute}
  • Mass dropped, m=0.02 kgm = 0.02 \text{ kg}
  • Distance of the mass from the axis, r=0.04 mr = 0.04 \text{ m}
  • Let II be the moment of inertia of the disc about its center (what we need to find).

2. Calculate Moments of Inertia:

  • Initial Moment of Inertia (I1I_1): Before the mass is dropped, only the disc is rotating. So, I1=II_1 = I.
  • Final Moment of Inertia (I2I_2): After the mass is dropped and sticks to the disc, the system consists of the disc and the point mass. The moment of inertia of a point mass mm at a distance rr from the axis is mr2mr^2. So, I2=I+mr2I_2 = I + mr^2.

3. Apply Conservation of Angular Momentum: According to the principle of conservation of angular momentum, the initial angular momentum (L1L_1) equals the final angular momentum (L2L_2): L1=L2L_1 = L_2 I1ω1=I2ω2I_1 \omega_1 = I_2 \omega_2 Substitute the expressions for I1I_1 and I2I_2: Iω1=(I+mr2)ω2I \omega_1 = (I + mr^2) \omega_2

4. Solve for II: Expand the equation: Iω1=Iω2+mr2ω2I \omega_1 = I \omega_2 + mr^2 \omega_2 Rearrange to group terms with II: Iω1Iω2=mr2ω2I \omega_1 - I \omega_2 = mr^2 \omega_2 I(ω1ω2)=mr2ω2I (\omega_1 - \omega_2) = mr^2 \omega_2 I=mr2ω2ω1ω2I = \frac{mr^2 \omega_2}{\omega_1 - \omega_2}

5. Substitute the Numerical Values: It's not necessary to convert angular speeds from rev/minute to rad/s, as the units will cancel out in the ratio ω2ω1ω2\frac{\omega_2}{\omega_1 - \omega_2}.

  • Calculate mr2mr^2: mr2=(0.02 kg)×(0.04 m)2mr^2 = (0.02 \text{ kg}) \times (0.04 \text{ m})^2 mr2=0.02×0.0016mr^2 = 0.02 \times 0.0016 mr2=0.000032 kg m2=3.2×105 kg m2mr^2 = 0.000032 \text{ kg m}^2 = 3.2 \times 10^{-5} \text{ kg m}^2

  • Substitute all values into the equation for II: I=(3.2×105)×364536I = \frac{(3.2 \times 10^{-5}) \times 36}{45 - 36} I=(3.2×105)×369I = \frac{(3.2 \times 10^{-5}) \times 36}{9} I=(3.2×105)×4I = (3.2 \times 10^{-5}) \times 4 I=12.8×105 kg m2I = 12.8 \times 10^{-5} \text{ kg m}^2 I=1.28×104 kg m2I = 1.28 \times 10^{-4} \text{ kg m}^2

6. Compare with Options: The calculated value 1.28×104 kg m21.28 \times 10^{-4} \text{ kg m}^2 is approximately 1.3×104 kg m21.3 \times 10^{-4} \text{ kg m}^2.

The final answer is 1.3x10-4 kgxm2\boxed{\text{1.3x10-4 kgxm2}}.

Explanation of the solution: The problem is solved using the principle of conservation of angular momentum. The initial angular momentum of the disc (Iω1I\omega_1) is equated to the final angular momentum of the disc-plus-mass system ((I+mr2)ω2(I+mr^2)\omega_2). By substituting the given values for mass, radius, and angular speeds, the moment of inertia of the disc (II) is calculated.