Solveeit Logo

Question

Question: Platinum crystallises in a face centered cube crystal with a unit cell length of 3.9231 Å. The densi...

Platinum crystallises in a face centered cube crystal with a unit cell length of 3.9231 Å. The density and atomic radius of platinum are respectively. [Atomic mass of Pt = 195]

A

45.25 g. cm–3, 2.516 Å

B

21.86 g. cm–3, 1.387 Å

C

29.46 g. cm–3, 1.48 Å

D

None of these

Answer

21.86 g. cm–3, 1.387 Å

Explanation

Solution

Density = Z×MNA×a3=4×1956.02×1023×(3.9231×108)3\frac{Z \times M}{N_{A} \times a^{3}} = \frac{4 \times 195}{6.02 \times 10^{23} \times (3.9231 \times 10^{- 8})^{3}}

= 21.86 g/cm3

for fcc lattice, 4r = a2a\sqrt{2}

so, r = a24\frac{a\sqrt{2}}{4}=3.923124\frac{3.9231\sqrt{2}}{4}Å = 1.387 Å.